Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2011

01.10.2011

New determinants of firing rates and patterns of vasopressinergic magnocellular neurons: predictions using a mathematical model of osmodetection

verfasst von: Louis Nadeau, Didier Mouginot

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Arginine vasopressin (AVP), one of the most important hormones involved in hydromineral homeostasis, is secreted by hypothalamic magnocellular neurons (MCNs). Here, we implemented two critical parameters for MCN physiology into a Hodgkin-Huxley simulation of the MCN. By incorporating the mechanosensitive channel (MSC) responsible for osmodetection and the synaptic inputs whose frequencies are modulated by changes in ambient osmolality into our model, we were able to develop an improved model with increased physiological relevance and gain new insight into the determinants of the firing patterns of AVP magnocellular neurons. Our results with this MCN model predict that 1) a single MCN is able to display all the firing patterns experimentally observed: silent, irregular, phasic and continuous firing patterns; 2) under conditions of hyperosmolality, burst durations are regulated by the frequency-dependent fatigue of dynorphin secretion; and 3) the transitions between firing patterns are controlled by EPSP and IPSP frequencies (0, 2, 4, 8, 16, 32, 64 and 128 Hz). Moreover, this simulation predicts that EPSPs and IPSPs do not modify the spiking frequency (SF) of phasic firing patterns (0.0034 Hz/Hz [EPSP]; 0.0012 Hz/Hz [IPSP]). Rather, these afferents strongly regulate SF during irregular and continuous firing patterns (0.075 Hz/Hz [EPSP]; 0.027 Hz/Hz [IPSP]). The use of the realistic MCN model developed here allows for an improved understanding of the determinants driving the firing patterns and spiking frequencies of vasopressinergic magnocellular neurons.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Andrew, R. D. (1987). Endogenous bursting by rat supraoptic neuroendocrine cells is calcium dependent. Journal de Physiologie, 384, 451–465. Andrew, R. D. (1987). Endogenous bursting by rat supraoptic neuroendocrine cells is calcium dependent. Journal de Physiologie, 384, 451–465.
Zurück zum Zitat Andrew, R. D., & Dudek, F. E. (1984). Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. Journal of Neurophysiology, 51, 552–566.PubMed Andrew, R. D., & Dudek, F. E. (1984). Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. Journal of Neurophysiology, 51, 552–566.PubMed
Zurück zum Zitat Armstrong, W. E., Smith, B. N., & Tian, M. (1994). Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro. Journal de Physiologie, 475, 115–128. Armstrong, W. E., Smith, B. N., & Tian, M. (1994). Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro. Journal de Physiologie, 475, 115–128.
Zurück zum Zitat Bicknell, R. J. (1988). Optimizing release from peptide hormone secretory nerve terminals. The Journal of Experimental Biology, 139, 51–65.PubMed Bicknell, R. J. (1988). Optimizing release from peptide hormone secretory nerve terminals. The Journal of Experimental Biology, 139, 51–65.PubMed
Zurück zum Zitat Boehmer, G., Greffrath, W., Martin, E., & Hermann, S. (2000). Subthreshold oscillation of the membrane potential in magnocellular neurones of the rat supraoptic nucleus. Journal de Physiologie, 526, 115–128.CrossRef Boehmer, G., Greffrath, W., Martin, E., & Hermann, S. (2000). Subthreshold oscillation of the membrane potential in magnocellular neurones of the rat supraoptic nucleus. Journal de Physiologie, 526, 115–128.CrossRef
Zurück zum Zitat Bourque, C. W. (1998). Osmoregulation of vasopressin neurons: a synergy of intrinsic and synaptic processes. Progress in Brain Research, 119, 59–76.PubMedCrossRef Bourque, C. W. (1998). Osmoregulation of vasopressin neurons: a synergy of intrinsic and synaptic processes. Progress in Brain Research, 119, 59–76.PubMedCrossRef
Zurück zum Zitat Bourque, C. W., & Renaud, L. P. (1991). Membrane properties of rat magnocellular neuroendocrine cells in vivo. Brain Research, 540, 349–352.PubMedCrossRef Bourque, C. W., & Renaud, L. P. (1991). Membrane properties of rat magnocellular neuroendocrine cells in vivo. Brain Research, 540, 349–352.PubMedCrossRef
Zurück zum Zitat Brimble, M. J., & Dyball, R. E. (1977). Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. Journal de Physiologie, 271, 253–271. Brimble, M. J., & Dyball, R. E. (1977). Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. Journal de Physiologie, 271, 253–271.
Zurück zum Zitat Brimble, M. J., Dyball, R. E., & Forsling, M. L. (1978). Oxytocin release following osmotic activation of oxytocin neurones in the paraventricular and supraoptic nuclei. Journal de Physiologie, 278, 69–78. Brimble, M. J., Dyball, R. E., & Forsling, M. L. (1978). Oxytocin release following osmotic activation of oxytocin neurones in the paraventricular and supraoptic nuclei. Journal de Physiologie, 278, 69–78.
Zurück zum Zitat Brown, C. H., & Bourque, C. W. (2004). Autocrine feedback inhibition of plateau potentials terminates phasic bursts in magnocellular neurosecretory cells of the rat supraoptic nucleus. Journal de Physiologie, 557, 949–960.CrossRef Brown, C. H., & Bourque, C. W. (2004). Autocrine feedback inhibition of plateau potentials terminates phasic bursts in magnocellular neurosecretory cells of the rat supraoptic nucleus. Journal de Physiologie, 557, 949–960.CrossRef
Zurück zum Zitat Brown, C. H., Ludwig, M., & Leng, G. (1998). kappa-opioid regulation of neuronal activity in the rat supraoptic nucleus in vivo. The Journal of Neuroscience, 18, 9480–9488.PubMed Brown, C. H., Ludwig, M., & Leng, G. (1998). kappa-opioid regulation of neuronal activity in the rat supraoptic nucleus in vivo. The Journal of Neuroscience, 18, 9480–9488.PubMed
Zurück zum Zitat Brown, C. H., Bull, P. M., & Bourque, C. W. (2004). Phasic bursts in rat magnocellular neurosecretory cells are not intrinsically regenerative in vivo. The European Journal of Neuroscience, 19, 2977–2983.PubMedCrossRef Brown, C. H., Bull, P. M., & Bourque, C. W. (2004). Phasic bursts in rat magnocellular neurosecretory cells are not intrinsically regenerative in vivo. The European Journal of Neuroscience, 19, 2977–2983.PubMedCrossRef
Zurück zum Zitat Brown, C. H., Scott, V., Ludwig, M., Leng, G., & Bourque, C. W. (2007). Somatodendritic dynorphin release: orchestrating activity patterns of vasopressin neurons. Biochemical Society Transactions, 35, 1236–1242.PubMedCrossRef Brown, C. H., Scott, V., Ludwig, M., Leng, G., & Bourque, C. W. (2007). Somatodendritic dynorphin release: orchestrating activity patterns of vasopressin neurons. Biochemical Society Transactions, 35, 1236–1242.PubMedCrossRef
Zurück zum Zitat Chakfe, Y., & Bourque, C. W. (2000). Excitatory peptides and osmotic pressure modulate mechanosensitive cation channels in concert. Nature Neuroscience, 3, 572–579.PubMedCrossRef Chakfe, Y., & Bourque, C. W. (2000). Excitatory peptides and osmotic pressure modulate mechanosensitive cation channels in concert. Nature Neuroscience, 3, 572–579.PubMedCrossRef
Zurück zum Zitat Dunn, F. L., Brennan, T. J., Nelson, A. E., & Robertson, G. L. (1973). The role of blood osmolality and volume in regulating vasopressin secretion in the rat. Journal of Clinical Investigation, 52, 3212–3219.PubMedCrossRef Dunn, F. L., Brennan, T. J., Nelson, A. E., & Robertson, G. L. (1973). The role of blood osmolality and volume in regulating vasopressin secretion in the rat. Journal of Clinical Investigation, 52, 3212–3219.PubMedCrossRef
Zurück zum Zitat Hatton, G. I. (1982). Phasic bursting activity of rat paraventricular neurones in the absence of synaptic transmission. Journal of Physiology, 327, 273–284. Hatton, G. I. (1982). Phasic bursting activity of rat paraventricular neurones in the absence of synaptic transmission. Journal of Physiology, 327, 273–284.
Zurück zum Zitat Hobbach, H. P., Hurth, S., Jost, D., & Racke, K. (1988). Effects of tetraethylammonium ions on frequency-dependent vasopressin release from the rat neurohypophysis. Journal de Physiologie, 397, 539–554. Hobbach, H. P., Hurth, S., Jost, D., & Racke, K. (1988). Effects of tetraethylammonium ions on frequency-dependent vasopressin release from the rat neurohypophysis. Journal de Physiologie, 397, 539–554.
Zurück zum Zitat Inenaga, K., Cui, L. N., Nagatomo, T., Honda, E., Ueta, Y., & Yamashita, H. (1997). Osmotic modulation in glutamatergic excitatory synaptic inputs to neurons in the supraoptic nucleus of rat hypothalamus in vitro. Journal of Neuroendocrinology, 9, 63–68.PubMedCrossRef Inenaga, K., Cui, L. N., Nagatomo, T., Honda, E., Ueta, Y., & Yamashita, H. (1997). Osmotic modulation in glutamatergic excitatory synaptic inputs to neurons in the supraoptic nucleus of rat hypothalamus in vitro. Journal of Neuroendocrinology, 9, 63–68.PubMedCrossRef
Zurück zum Zitat Iremonger, K. J., & Bains, J. S. (2007). Integration of asynchronously released quanta prolongs the postsynaptic spike window. The Journal of Neuroscience, 27, 6684–6691.PubMedCrossRef Iremonger, K. J., & Bains, J. S. (2007). Integration of asynchronously released quanta prolongs the postsynaptic spike window. The Journal of Neuroscience, 27, 6684–6691.PubMedCrossRef
Zurück zum Zitat Komendantov, A. O., Trayanova, N. A., & Tasker, J. G. (2007). Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: a multicompartmental model study. Journal of Computational Neuroscience, 23, 143–168.PubMedCrossRef Komendantov, A. O., Trayanova, N. A., & Tasker, J. G. (2007). Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: a multicompartmental model study. Journal of Computational Neuroscience, 23, 143–168.PubMedCrossRef
Zurück zum Zitat Leng, G., Brown, C. H., Bull, P. M., Brown, D., Scullion, S., Currie, J., et al. (2001). Responses of magnocellular neurons to osmotic stimulation involves coactivation of excitatory and inhibitory input: an experimental and theoretical analysis. The Journal of Neuroscience, 21, 6967–6977.PubMed Leng, G., Brown, C. H., Bull, P. M., Brown, D., Scullion, S., Currie, J., et al. (2001). Responses of magnocellular neurons to osmotic stimulation involves coactivation of excitatory and inhibitory input: an experimental and theoretical analysis. The Journal of Neuroscience, 21, 6967–6977.PubMed
Zurück zum Zitat Li, Z., & Ferguson, A. V. (1996). Electrophysiological properties of paraventricular magnocellular neurons in rat brain slices: modulation of IA by angiotensin II. Neuroscience, 71, 133–145.PubMedCrossRef Li, Z., & Ferguson, A. V. (1996). Electrophysiological properties of paraventricular magnocellular neurons in rat brain slices: modulation of IA by angiotensin II. Neuroscience, 71, 133–145.PubMedCrossRef
Zurück zum Zitat Li, C., Tripathi, P. K., & Armstrong, W. E. (2007). Differences in spike train variability in rat vasopressin and oxytocin neurons and their relationship to synaptic activity. Journal de Physiologie, 581, 221–240.CrossRef Li, C., Tripathi, P. K., & Armstrong, W. E. (2007). Differences in spike train variability in rat vasopressin and oxytocin neurons and their relationship to synaptic activity. Journal de Physiologie, 581, 221–240.CrossRef
Zurück zum Zitat McKinley, M. J., Mathai, M. L., McAllen, R. M., McClear, R. C., Miselis, R. R., Pennington, G. L., et al. (2004). Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis. Journal of Neuroendocrinology, 16, 340–347.PubMedCrossRef McKinley, M. J., Mathai, M. L., McAllen, R. M., McClear, R. C., Miselis, R. R., Pennington, G. L., et al. (2004). Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis. Journal of Neuroendocrinology, 16, 340–347.PubMedCrossRef
Zurück zum Zitat Oliet, S. H., & Bourque, C. W. (1993a). Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature, 364, 341–343.PubMedCrossRef Oliet, S. H., & Bourque, C. W. (1993a). Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature, 364, 341–343.PubMedCrossRef
Zurück zum Zitat Oliet, S. H., & Bourque, C. W. (1993b). Steady-state osmotic modulation of cationic conductance in neurons of rat supraoptic nucleus. The American Journal of Physiology, 265, R1475–R1479.PubMed Oliet, S. H., & Bourque, C. W. (1993b). Steady-state osmotic modulation of cationic conductance in neurons of rat supraoptic nucleus. The American Journal of Physiology, 265, R1475–R1479.PubMed
Zurück zum Zitat Richard, D., & Bourque, C. W. (1995). Synaptic control of rat supraoptic neurones during osmotic stimulation of the organum vasculosum lamina terminalis in vitro. Journal de Physiologie, 489, 567–577. Richard, D., & Bourque, C. W. (1995). Synaptic control of rat supraoptic neurones during osmotic stimulation of the organum vasculosum lamina terminalis in vitro. Journal de Physiologie, 489, 567–577.
Zurück zum Zitat Roper, P., Callaway, J., Shevchenko, T., Teruyama, R., & Armstrong, W. (2003). AHP’s, HAP’s and DAP’s: how potassium currents regulate the excitability of rat supraoptic neurones. Journal of Computational Neuroscience, 15, 367–389.PubMedCrossRef Roper, P., Callaway, J., Shevchenko, T., Teruyama, R., & Armstrong, W. (2003). AHP’s, HAP’s and DAP’s: how potassium currents regulate the excitability of rat supraoptic neurones. Journal of Computational Neuroscience, 15, 367–389.PubMedCrossRef
Zurück zum Zitat Roper, P., Callaway, J., & Armstrong, W. (2004). Burst initiation and termination in phasic vasopressin cells of the rat supraoptic nucleus: a combined mathematical, electrical, and calcium fluorescence study. The Journal of Neuroscience, 24, 4818–4831.PubMedCrossRef Roper, P., Callaway, J., & Armstrong, W. (2004). Burst initiation and termination in phasic vasopressin cells of the rat supraoptic nucleus: a combined mathematical, electrical, and calcium fluorescence study. The Journal of Neuroscience, 24, 4818–4831.PubMedCrossRef
Zurück zum Zitat Shibuya, I., Kabashima, N., Tanaka, K., Setiadji, V. S., Noguchi, J., Harayama, N., et al. (1998). Patch-clamp analysis of the mechanism of PACAP-induced excitation in rat supraoptic neurones. Journal of Neuroendocrinology, 10, 759–768.PubMedCrossRef Shibuya, I., Kabashima, N., Tanaka, K., Setiadji, V. S., Noguchi, J., Harayama, N., et al. (1998). Patch-clamp analysis of the mechanism of PACAP-induced excitation in rat supraoptic neurones. Journal of Neuroendocrinology, 10, 759–768.PubMedCrossRef
Zurück zum Zitat Shuster, S. J., Riedl, M., Li, X., Vulchanova, L., & Elde, R. (1999). Stimulus-dependent translocation of kappa opioid receptors to the plasma membrane. The Journal of Neuroscience, 19, 2658–2664.PubMed Shuster, S. J., Riedl, M., Li, X., Vulchanova, L., & Elde, R. (1999). Stimulus-dependent translocation of kappa opioid receptors to the plasma membrane. The Journal of Neuroscience, 19, 2658–2664.PubMed
Zurück zum Zitat Tremblay, C., Berret, E., Henry, M., Nehme, B., Nadeau, L., & Mouginot, D. (2010). A neuronal sodium leak channel is responsible for the detection of sodium in the rat median preoptic nucleus. Journal of Neurophysiology. doi:10.1152/jn.00417.2010.PubMed Tremblay, C., Berret, E., Henry, M., Nehme, B., Nadeau, L., & Mouginot, D. (2010). A neuronal sodium leak channel is responsible for the detection of sodium in the rat median preoptic nucleus. Journal of Neurophysiology. doi:10.​1152/​jn.​00417.​2010.PubMed
Zurück zum Zitat Trudel, E., & Bourque, C. W. (2003). A rat brain slice preserving synaptic connections between neurons of the suprachiasmatic nucleus, organum vasculosum lamina terminalis and supraoptic nucleus. Journal of Neuroscience Methods, 128, 67–77.PubMedCrossRef Trudel, E., & Bourque, C. W. (2003). A rat brain slice preserving synaptic connections between neurons of the suprachiasmatic nucleus, organum vasculosum lamina terminalis and supraoptic nucleus. Journal of Neuroscience Methods, 128, 67–77.PubMedCrossRef
Zurück zum Zitat Trudel, E., & Bourque, C. W. (2010). Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep. Nature Neuroscience, 13, 467–474.PubMedCrossRef Trudel, E., & Bourque, C. W. (2010). Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep. Nature Neuroscience, 13, 467–474.PubMedCrossRef
Zurück zum Zitat Voisin, D. L., Chakfe, Y., & Bourque, C. W. (1999). Coincident detection of CSF Na+ and osmotic pressure in osmoregulatory neurons of the supraoptic nucleus. Neuron, 24, 453–460.PubMedCrossRef Voisin, D. L., Chakfe, Y., & Bourque, C. W. (1999). Coincident detection of CSF Na+ and osmotic pressure in osmoregulatory neurons of the supraoptic nucleus. Neuron, 24, 453–460.PubMedCrossRef
Zurück zum Zitat Wakerley, J. B., Poulain, D. A., & Brown, D. (1978). Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Research, 148, 425–440.PubMedCrossRef Wakerley, J. B., Poulain, D. A., & Brown, D. (1978). Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Research, 148, 425–440.PubMedCrossRef
Zurück zum Zitat Wakerly, J. B., Poulain, D. A., Dyball, R. E., & Cross, B. A. (1975). Activity of phasic neurosecretory cells during haemorrhage. Nature, 258, 82–84.CrossRef Wakerly, J. B., Poulain, D. A., Dyball, R. E., & Cross, B. A. (1975). Activity of phasic neurosecretory cells during haemorrhage. Nature, 258, 82–84.CrossRef
Zurück zum Zitat Wuarin, J. P., & Dudek, F. E. (1993). Patch-clamp analysis of spontaneous synaptic currents in supraoptic neuroendocrine cells of the rat hypothalamus. The Journal of Neuroscience, 13, 2323–2331.PubMed Wuarin, J. P., & Dudek, F. E. (1993). Patch-clamp analysis of spontaneous synaptic currents in supraoptic neuroendocrine cells of the rat hypothalamus. The Journal of Neuroscience, 13, 2323–2331.PubMed
Zurück zum Zitat Zhang, Z., & Bourque, C. W. (2003). Osmometry in osmosensory neurons. Nature Neuroscience, 6, 1021–1022.PubMedCrossRef Zhang, Z., & Bourque, C. W. (2003). Osmometry in osmosensory neurons. Nature Neuroscience, 6, 1021–1022.PubMedCrossRef
Zurück zum Zitat Zhang, Z., & Bourque, C. W. (2008). Amplification of transducer gain by angiotensin II-mediated enhancement of cortical actin density in osmosensory neurons. The Journal of Neuroscience, 28, 9536–9544.PubMedCrossRef Zhang, Z., & Bourque, C. W. (2008). Amplification of transducer gain by angiotensin II-mediated enhancement of cortical actin density in osmosensory neurons. The Journal of Neuroscience, 28, 9536–9544.PubMedCrossRef
Zurück zum Zitat Zhang, Z., Kindrat, A. N., Sharif-Naeini, R., & Bourque, C. W. (2007). Actin filaments mediate mechanical gating during osmosensory transduction in rat supraoptic nucleus neurons. The Journal of Neuroscience, 27, 4008–4013.PubMedCrossRef Zhang, Z., Kindrat, A. N., Sharif-Naeini, R., & Bourque, C. W. (2007). Actin filaments mediate mechanical gating during osmosensory transduction in rat supraoptic nucleus neurons. The Journal of Neuroscience, 27, 4008–4013.PubMedCrossRef
Metadaten
Titel
New determinants of firing rates and patterns of vasopressinergic magnocellular neurons: predictions using a mathematical model of osmodetection
verfasst von
Louis Nadeau
Didier Mouginot
Publikationsdatum
01.10.2011
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2011
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0321-4

Weitere Artikel der Ausgabe 2/2011

Journal of Computational Neuroscience 2/2011 Zur Ausgabe