Skip to main content

10.12.2024 | Original Paper

New extremal Type II \({\mathbb {Z}}_4\)-codes of length 64

verfasst von: Sara Ban Martinović, Sanja Rukavina

Erschienen in: Applicable Algebra in Engineering, Communication and Computing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Type II \({\mathbb {Z}}_4\)-codes are a class of self-dual \({\mathbb {Z}}_4\)-codes with Euclidean weights divisible by eight. A Type II \({\mathbb {Z}}_4\)-code of length n is extremal if its minimum Euclidean weight is equal to \(8\left\lfloor \frac{n}{24}\right\rfloor +8.\) A small number of such codes is known for lengths greater than or equal to 48. Based on the doubling method, in this paper we develop a method to construct new extremal Type II \({\mathbb {Z}}_4\)-codes starting from a free extremal Type II \({\mathbb {Z}}_4\)-code of length 48, 56 or 64. Using this method, we construct extremal Type II \({\mathbb {Z}}_4\)-codes of length 64 and type \(4^{31}2^2\). Extremal Type II \({\mathbb {Z}}_4\)-codes of length 64 of this type were not known before. Moreover, the residue codes of the constructed extremal \({\mathbb {Z}}_4\)-codes are best known [64, 31] binary codes and the supports of the minimum weight codewords of the residue code and the torsion code of one of these codes yields self-orthogonal 1-design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ban, S., Crnković, D., Mravić, M., Rukavina, S.: New extremal Type II \({\mathbb{Z} }_4\)-codes of length 32 obtained from Hadamard matrices. Discrete. Math. Algorithms Appl. 11(5), 1950057 (2019)MathSciNetCrossRef Ban, S., Crnković, D., Mravić, M., Rukavina, S.: New extremal Type II \({\mathbb{Z} }_4\)-codes of length 32 obtained from Hadamard matrices. Discrete. Math. Algorithms Appl. 11(5), 1950057 (2019)MathSciNetCrossRef
2.
Zurück zum Zitat Ban, S., Rukavina, S.: On some new extremal Type II \({\mathbb{Z} }_4\)-codes of length 40. Math. Commun. 25(2), 253–268 (2020)MathSciNet Ban, S., Rukavina, S.: On some new extremal Type II \({\mathbb{Z} }_4\)-codes of length 40. Math. Commun. 25(2), 253–268 (2020)MathSciNet
3.
Zurück zum Zitat Ban, S., Rukavina, S.: Type IV-II codes over \({\mathbb{Z} }_4\) constructed from generalized bent functions. Australas. J. Combin. 84(3), 341–356 (2022)MathSciNet Ban, S., Rukavina, S.: Type IV-II codes over \({\mathbb{Z} }_4\) constructed from generalized bent functions. Australas. J. Combin. 84(3), 341–356 (2022)MathSciNet
4.
Zurück zum Zitat Bonnecaze, A., Solé, P., Bachoc, C., Mourrain, B.: Type II codes over \({\mathbb{Z} }_4\). IEEE Trans. Inform. Theory 43, 969–976 (1997)MathSciNetCrossRef Bonnecaze, A., Solé, P., Bachoc, C., Mourrain, B.: Type II codes over \({\mathbb{Z} }_4\). IEEE Trans. Inform. Theory 43, 969–976 (1997)MathSciNetCrossRef
6.
Zurück zum Zitat Chan, K. H.: Three New Methods for Construction of Extremal Type II \({\mathbb{Z}}_4\)-Codes, PhD Thesis, University of Illinois at Chicago (2012) Chan, K. H.: Three New Methods for Construction of Extremal Type II \({\mathbb{Z}}_4\)-Codes, PhD Thesis, University of Illinois at Chicago (2012)
7.
Zurück zum Zitat Conway, J.H., Sloane, N.J.A.: Self-Dual Codes over the Integers Modulo 4. J. Comb. Theory Ser. A 62, 30–45 (1993)MathSciNetCrossRef Conway, J.H., Sloane, N.J.A.: Self-Dual Codes over the Integers Modulo 4. J. Comb. Theory Ser. A 62, 30–45 (1993)MathSciNetCrossRef
8.
Zurück zum Zitat Crnković, D., Mravić, M., Rukavina, S.: Construction of extremal \({\mathbb{Z} }_4\)-codes using a neighborhood search algorithm. Adv. Math. Commun. 19(1), 91–108 (2025)MathSciNetCrossRef Crnković, D., Mravić, M., Rukavina, S.: Construction of extremal \({\mathbb{Z} }_4\)-codes using a neighborhood search algorithm. Adv. Math. Commun. 19(1), 91–108 (2025)MathSciNetCrossRef
9.
Zurück zum Zitat Ebeling, W.: Lattices and codes: a course partially based on lectures by Friedrich Hirzebruch. Springer Fachmedien Wiesbaden, Wiesbaden (2013)CrossRef Ebeling, W.: Lattices and codes: a course partially based on lectures by Friedrich Hirzebruch. Springer Fachmedien Wiesbaden, Wiesbaden (2013)CrossRef
11.
Zurück zum Zitat Harada, M.: Construction of extremal Type II \({\mathbb{Z} }_{2k}\)-codes. Finite Fields Appl. 87, 102154 (2023)CrossRef Harada, M.: Construction of extremal Type II \({\mathbb{Z} }_{2k}\)-codes. Finite Fields Appl. 87, 102154 (2023)CrossRef
12.
Zurück zum Zitat Harada, M.: Extremal Type II \({\mathbb{Z} }_4\)-Codes of Lengths 56 and 64. J. Combin. Theory Ser. A 117, 1285–1288 (2010)MathSciNetCrossRef Harada, M.: Extremal Type II \({\mathbb{Z} }_4\)-Codes of Lengths 56 and 64. J. Combin. Theory Ser. A 117, 1285–1288 (2010)MathSciNetCrossRef
13.
Zurück zum Zitat Harada, M.: Note on the residue codes of self-dual \({\mathbb{Z} }_4\)-codes having large minimum Lee weights. Adv. Math. Commun. 10, 795–706 (2016)CrossRef Harada, M.: Note on the residue codes of self-dual \({\mathbb{Z} }_4\)-codes having large minimum Lee weights. Adv. Math. Commun. 10, 795–706 (2016)CrossRef
14.
Zurück zum Zitat Harada, M., Kitazume, M., Munemasa, A., Venkov, B.: On some self-dual codes and unimodular lattices in dimension 48. Eur. J. Combin. 26, 543–557 (2005)MathSciNetCrossRef Harada, M., Kitazume, M., Munemasa, A., Venkov, B.: On some self-dual codes and unimodular lattices in dimension 48. Eur. J. Combin. 26, 543–557 (2005)MathSciNetCrossRef
15.
Zurück zum Zitat Harada, M., Solé, P., Gaborit, P.: Self-dual codes over \({\mathbb{Z} }_4\) and unimodular lattices: a survey. In: Shum, K.-P., Taft, E.J., Wan, Z.-X. (eds.) Algebra and combinatorics: an international congress, pp. 255–275. Springer, Singapore (1999) Harada, M., Solé, P., Gaborit, P.: Self-dual codes over \({\mathbb{Z} }_4\) and unimodular lattices: a survey. In: Shum, K.-P., Taft, E.J., Wan, Z.-X. (eds.) Algebra and combinatorics: an international congress, pp. 255–275. Springer, Singapore (1999)
16.
Zurück zum Zitat Huffman, W.C., Pless, V.: Fundamentals of error-correcting codes. Cambridge University Press, Cambridge (2003)CrossRef Huffman, W.C., Pless, V.: Fundamentals of error-correcting codes. Cambridge University Press, Cambridge (2003)CrossRef
17.
Zurück zum Zitat MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-Holland, Amsterdam (1977) MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-Holland, Amsterdam (1977)
Metadaten
Titel
New extremal Type II -codes of length 64
verfasst von
Sara Ban Martinović
Sanja Rukavina
Publikationsdatum
10.12.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00674-2