Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

28.01.2020 | Original Article

New filter approaches for feature selection using differential evolution and fuzzy rough set theory

Zeitschrift:
Neural Computing and Applications
Autor:
Emrah Hancer
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Nowadays the incredibly advanced developments in information technologies have led to exponential growth in the datasets with respect to both the dimensionality and the sample size. This trend can be easily illustrated in popular online data repositories (e.g., UCI machine learning repository). The more growth in the datasets, the more challenging the data management becomes. This is because such datasets usually comprise a high level of noise as well as the necessary information. Therefore, the elimination of noisy features in the datasets is an important task to discover meaningful knowledge. Although a large number of feature selection approaches have been proposed in the literature to deal with noisy features, the need for the studies based on feature selection has not come to an end. In this paper, we propose differential evolution-based feature selection approaches wrapped around the principles of fuzzy rough set theory. In contrast to well-known feature selection criteria such as standard mutual information, standard rough set and probabilistic rough set, our approaches can also deal with real-valued variables without the requirement of discretization. Moreover, the feature subsets selected by our approaches can profoundly improve the classification performance compared to the recent particle swarm optimization approaches based on probabilistic rough set and the state-of-the-art filter approaches.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise