Skip to main content

2019 | OriginalPaper | Buchkapitel

New Generation Magnetorheological, Magnetodynamic, and Ferrofluid Control Devices with Nonstationary Electromagnetic Fields

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Improving energy efficiency of devices and systems has economic and ecological importance. Applicable hydraulic, magnetorheological, and magnetodynamic control devices consume large amounts of energy, therefore, perfection of their constructions and optimization of working processes are important research tasks. The use of magnetorheological, magnetodynamic, and ferrofluid control devices with nonstationary electromagnetic fields reduces power consumption of drive systems, increases their accuracy, reliability and durability, and raises operating temperature and pressure. The paper presents variations of original constructions of new generation magnetorheological and magnetodynamic devices with rotating and helical control electromagnetic fields, which are used for the regulation of fluid flow characteristics. The application of such regulating devices cannot only improve energy efficiency; it can also increase operating pressures and reduce dependence on temperature factors of their characteristics. Installations of ferrofluid control elements with nonstationary electromagnetic control fields in hydraulic devices contribute to increase in energy efficiency of hydraulic systems and improve their performance. Similar hybrid hydraulic systems have higher response rate to control signal and maintain stability of flow characteristics. Hybrid hydraulic systems include simple geometry of operating cavities and exclude movable mechanical elements. The constructions with movable mechanical elements have significant changes in geometry of operating cavities by influence of erosion processes. Original hybrid hydraulic device construction is presented in the paper. Developed magnetorheological and magnetodynamic devices also have simple geometry of operating cavities. The simplification of structures of devices and systems obviously decreases material consumption for their production, speeds up technological processes, increases profitability of enterprises, and reduces negative impact on environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rosenfeldt H et al (2001) Pressure motor for electro-rheological fluids. US patent 6,116,144, 05 June 2001 Rosenfeldt H et al (2001) Pressure motor for electro-rheological fluids. US patent 6,116,144, 05 June 2001
2.
Zurück zum Zitat Durward R (2004) Method and apparatus for enhancing fluid velocities in pipelines. US patent 2004/0,247,451, 09 Dec 2004 Durward R (2004) Method and apparatus for enhancing fluid velocities in pipelines. US patent 2004/0,247,451, 09 Dec 2004
3.
Zurück zum Zitat Ciocanel C, Islam N (2011) Integrated electro-magnetohydrodynamic micropumps and methods for pumping fluids. US patent 2011/0,037,325, 17 Feb 2011 Ciocanel C, Islam N (2011) Integrated electro-magnetohydrodynamic micropumps and methods for pumping fluids. US patent 2011/0,037,325, 17 Feb 2011
4.
Zurück zum Zitat Proselkov YuM, Pakhlian IA (2012) The hydro ejector mixer. RU patent 2,442,686, 20 Feb 2012 Proselkov YuM, Pakhlian IA (2012) The hydro ejector mixer. RU patent 2,442,686, 20 Feb 2012
5.
Zurück zum Zitat Daub M, Steigert J (2016) Cartridge, centrifuge and method. US patent 9,399,214, 26 July 2016 Daub M, Steigert J (2016) Cartridge, centrifuge and method. US patent 9,399,214, 26 July 2016
6.
Zurück zum Zitat Eckert CE (1995) Method for molten metal treatment. US patent 5,462,580, 31 Oct 1995 Eckert CE (1995) Method for molten metal treatment. US patent 5,462,580, 31 Oct 1995
7.
Zurück zum Zitat Vlasov AV (2011) Uprugoobolochechnyye magnitozhidkostnyye elementy sistem upravleniya (Elastic shell ferrofluid elements of control systems). Publishing house BIBiU, Balakovo Vlasov AV (2011) Uprugoobolochechnyye magnitozhidkostnyye elementy sistem upravleniya (Elastic shell ferrofluid elements of control systems). Publishing house BIBiU, Balakovo
8.
Zurück zum Zitat Vlasov AV (2010) Elektrogidravlicheskoye magnitozhidkostnoye reguliruyushcheye ustroystvo (Electro-hydraulic ferrofluid regulating device). Publishing house BIBiU, Balakovo Vlasov AV (2010) Elektrogidravlicheskoye magnitozhidkostnoye reguliruyushcheye ustroystvo (Electro-hydraulic ferrofluid regulating device). Publishing house BIBiU, Balakovo
9.
Zurück zum Zitat Naigert KV, Rednikov SN (2017) The magnetorheological drive for directly electromagnetically controlling flow characteristics of an upper contour of a hydraulic slide-valve system. RU patent 2,634,163, 24 Oct 2017 Naigert KV, Rednikov SN (2017) The magnetorheological drive for directly electromagnetically controlling flow characteristics of an upper contour of a hydraulic slide-valve system. RU patent 2,634,163, 24 Oct 2017
10.
Zurück zum Zitat Ulaby FT, Michielssen E (2010) Fundamentals of applied electromagnetics. Prentice Hall, Boston Ulaby FT, Michielssen E (2010) Fundamentals of applied electromagnetics. Prentice Hall, Boston
11.
Zurück zum Zitat Voronkov AV et al (2010) Matematicheskoye modelirovaniye raboty MGD-nasosa (Mathematical modeling of magnetodynamic pump). Preprinty IPM im. Keldysha MV, Moscow 51 Voronkov AV et al (2010) Matematicheskoye modelirovaniye raboty MGD-nasosa (Mathematical modeling of magnetodynamic pump). Preprinty IPM im. Keldysha MV, Moscow 51
12.
Zurück zum Zitat Landau LD (2003) Elektrodinamika sploshnykh sred (Electrodynamics of continuous media). Fizmatlit, Moscow Landau LD (2003) Elektrodinamika sploshnykh sred (Electrodynamics of continuous media). Fizmatlit, Moscow
13.
Zurück zum Zitat Cowley MD, Rosensweig RE (1967) The interfacial stability of a ferromagnetic fluid. J Fluid Mech 30:671–688CrossRef Cowley MD, Rosensweig RE (1967) The interfacial stability of a ferromagnetic fluid. J Fluid Mech 30:671–688CrossRef
14.
Zurück zum Zitat Tarapov IE (1974) Poverkhnosti razryva v namagnichivayushcheysya srede (Surfaces of discontinuity in a magnetized medium). Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki 5:23–27 Tarapov IE (1974) Poverkhnosti razryva v namagnichivayushcheysya srede (Surfaces of discontinuity in a magnetized medium). Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki 5:23–27
15.
Zurück zum Zitat Shliomis MI (1967) Hydrodynamics of a liquid with intrinsic rotation. Sov Phys JETP 24(1):173–177MATH Shliomis MI (1967) Hydrodynamics of a liquid with intrinsic rotation. Sov Phys JETP 24(1):173–177MATH
16.
Zurück zum Zitat Shliomis MI (1972) Effective viscosity of magnetic suspensions. Sov Phys JETP 34(6):1291–1294 Shliomis MI (1972) Effective viscosity of magnetic suspensions. Sov Phys JETP 34(6):1291–1294
17.
Zurück zum Zitat McTague JP (1969) Magnetoviscosity of magnetic colloids. J Chem Phys 51(1):133–136CrossRef McTague JP (1969) Magnetoviscosity of magnetic colloids. J Chem Phys 51(1):133–136CrossRef
18.
Zurück zum Zitat Skjeltorp AT (1985) Ordering phenomena of particles dispersed in magnetic fluids. J Appl Phys 57:3285–3290CrossRef Skjeltorp AT (1985) Ordering phenomena of particles dispersed in magnetic fluids. J Appl Phys 57:3285–3290CrossRef
19.
Zurück zum Zitat Skjeltorp AT (1987) Monodisperse particles and ferrofluids, a fruit-fly model system. J Magn Magn Mater 65:195–203CrossRef Skjeltorp AT (1987) Monodisperse particles and ferrofluids, a fruit-fly model system. J Magn Magn Mater 65:195–203CrossRef
20.
Zurück zum Zitat Skjeltorp AT (1984) Colloidal crystals in magnetic fluid. J Appl Phys 55(6):2587–2588CrossRef Skjeltorp AT (1984) Colloidal crystals in magnetic fluid. J Appl Phys 55(6):2587–2588CrossRef
21.
Zurück zum Zitat Naigert KV (2016) Modelirovaniye i raschet rabochikh protsessov magnitoreologicheskogo drosselya (The modeling and the calculation of working processes of the magnetorheological throttle). Dissertation, South Ural State University Naigert KV (2016) Modelirovaniye i raschet rabochikh protsessov magnitoreologicheskogo drosselya (The modeling and the calculation of working processes of the magnetorheological throttle). Dissertation, South Ural State University
22.
Zurück zum Zitat Naigert KV, Rednikov SN (2017) The magnetorheological drive for directly electromagnetically controlling flow characteristics of an upper contour of a hydraulic system which includes a hydraulic bridge. RU patent 2,634,166, 24 Oct 2017 Naigert KV, Rednikov SN (2017) The magnetorheological drive for directly electromagnetically controlling flow characteristics of an upper contour of a hydraulic system which includes a hydraulic bridge. RU patent 2,634,166, 24 Oct 2017
23.
Zurück zum Zitat Naigert KV, Rednikov SN (2017) The modular system of electromagnetically transporting liquids which have magnetic properties. RU patent 2,624,082, 30 June 2017 Naigert KV, Rednikov SN (2017) The modular system of electromagnetically transporting liquids which have magnetic properties. RU patent 2,624,082, 30 June 2017
24.
Zurück zum Zitat Naigert KV, Tutynin VT (2017) The mixing and dosing system with the ferrofluid control elements. RU patent 2,639,906, 25 Dec 2017 Naigert KV, Tutynin VT (2017) The mixing and dosing system with the ferrofluid control elements. RU patent 2,639,906, 25 Dec 2017
25.
Zurück zum Zitat Takeketi S, Tikazumi S (1993) Magnitnyye zhidkosti (Magnetic fluids). Mir, Moscow Takeketi S, Tikazumi S (1993) Magnitnyye zhidkosti (Magnetic fluids). Mir, Moscow
26.
Zurück zum Zitat Tselischev DV, Tselischev VA, Konstantinov SYu (2015) Avtomatizirovannyy stend dlya diagnostiki i ispytaniya gidrooborudovaniya (Automated stand for diagnostics and testing of hydraulic equipment). Autom Ind 10:39–42 Tselischev DV, Tselischev VA, Konstantinov SYu (2015) Avtomatizirovannyy stend dlya diagnostiki i ispytaniya gidrooborudovaniya (Automated stand for diagnostics and testing of hydraulic equipment). Autom Ind 10:39–42
27.
Zurück zum Zitat Naigert KV, Tselischev VA (2017) The software complex for combined evaluation of viscosity of magnetorheological environment in the external energy fields. RU certificate of reg. prog. 2017662736, 15 Nov 2017 Naigert KV, Tselischev VA (2017) The software complex for combined evaluation of viscosity of magnetorheological environment in the external energy fields. RU certificate of reg. prog. 2017662736, 15 Nov 2017
Metadaten
Titel
New Generation Magnetorheological, Magnetodynamic, and Ferrofluid Control Devices with Nonstationary Electromagnetic Fields
verfasst von
K. V. Naigert
V. A. Tselischev
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-95630-5_145

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.