Skip to main content

2022 | Buch

New Horizons in Computational Chemistry Software

herausgegeben von: Dr. Michael Filatov, Prof. Cheol H. Choi, Prof. Dr. Massimo Olivucci

Verlag: Springer International Publishing

Buchreihe : Topics in Current Chemistry Collections

insite
SUCHEN

Über dieses Buch

This volume presents the current status of software development in the field of computational and theoretical chemistry and gives an overview of the emerging trends. The challenges of maintaining the legacy codes and their adaptation to the rapidly growing hardware capabilities and the new programming environments are surveyed in a series of topical reviews written by the core developers and maintainers of the popular quantum chemistry and molecular dynamics programs. Special emphasis is given to new computational methodologies and practical aspects of their implementation and application in the computational chemistry codes. Modularity of the computational chemistry software is an emerging concept that enables to bypass the development and maintenance bottleneck of the legacy software and to customize the software using the best available computational procedures implemented in the form of self-contained modules. Perspectives on modular design of the computer programs for modeling molecular electronic structure, non-adiabatic dynamics, kinetics, as well as for data visualization are presented by the researchers actively working in the field of software development and application. This volume is of interest to quantum and computational chemists as well as experimental chemists actively using and developing computational software for their research.
Chapters "MLatom 2: An Integrative Platform for Atomistic Machine Learning” and “Evolution of the Automatic Rhodopsin Modeling (ARM) Protocol" are available open access under a CC BY 4.0 License via link.springer.com.

Inhaltsverzeichnis

Frontmatter
Technological Advances in Remote Collaborations
Abstract
Sustainable scientific software needs a strong collaboration framework to ensure continuity by passing on the tools, skills and knowledge needed to the next generation. The COVID-19 pandemic triggered the unexpected effect of accelerating the development of remote platforms and tools to open up collaborations to a wider global community. In this article we outline the elements needed for such a framework, such as education, tools and community building, and discuss the current advances in technology with a nod to the future.
Rika Kobayashi

Open Access

MLatom 2: An Integrative Platform for Atomistic Machine Learning
Abstract
Atomistic machine learning (AML) simulations are used in chemistry at an everincreasing pace. A large number of AML models has been developed, but their implementations are scattered among different packages, each with its own conventions for input and output. Thus, here we give an overview of our MLatom 2 software package, which provides an integrative platform for a wide variety of AML simulations by implementing from scratch and interfacing existing software for a range of state-of-the-art models. These include kernel method-based model types such as KREG (native implementation), sGDML, and GAP-SOAP as well as neuralnetwork- based model types such as ANI, DeepPot-SE, and PhysNet. The theoretical foundations behind these methods are overviewed too. The modular structure of MLatom allows for easy extension to more AML model types. MLatom 2 also has many other capabilities useful for AML simulations, such as the support of custom descriptors, farthest-point and structure-based sampling, hyperparameter optimization, model evaluation, and automatic learning curve generation. It can also be used for such multi-step tasks as Δ-learning, self-correction approaches, and absorption spectrum simulation within the machine-learning nuclear-ensemble approach. Several of these MLatom 2 capabilities are showcased in application examples.
Pavlo O Dral, Fuchun Ge, Bao Xin Xue, Yi-Fan Hou, Max Pinheiro Jr, Jianxing Huang, Mario Barbatti
Reaction Space Projector (ReSPer) for Visualizing Dynamic Reaction Routes Based on Reduced-Dimension Space
Abstract
To analyze chemical reaction dynamics based on a reaction path network, we have developed the “Reaction Space Projector” (ReSPer) method with the aid of the dimensionality reduction method. This program has two functions: the construction of a reduced-dimensionality reaction space from a molecular structure dataset, and the projection of dynamic trajectories into the low-dimensional reaction space. In this paper, we apply ReSPer to isomerization and bifurcation reactions of the Au5 cluster and succeed in analyzing dynamic reaction routes involved in multiple elementary reaction processes, constructing complicated networks (called “closed islands”) of nuclear permutation-inversion (NPI) isomerization reactions, and elucidating dynamic behaviors in bifurcation reactions with reference to bundles of trajectories. Interestingly, in the second application, we find a correspondence between the contribution ratios in the ability to visualize and the symmetry of the morphology of closed islands. In addition, the third application suggests the existence of boundaries that determine the selectivity in bifurcation reactions, which was discussed in the phase space. The ReSPer program is a versatile and robust tool to clarify dynamic reaction mechanisms based on the reduced-dimensionality reaction space without prior knowledge of target reactions.
Takuro Tsutsumi, Yuriko Ono, Tetsuya Taketsugu
NAST: Nonadiabatic Statistical Theory Package for Predicting Kinetics of Spin-Dependent Processes
Abstract
We present a nonadiabatic statistical theory (NAST) package for predicting kinetics of spin-dependent processes, such as intersystem crossings, spin-forbidden unimolecular reactions, and spin crossovers. The NAST package can calculate the probabilities and rates of transitions between the electronic states of different spin multiplicities. Both the microcanonical (energy-dependent) and canonical (temperature-dependent) rate constants can be obtained. Quantum effects, including tunneling, zero-point vibrational energy, and reaction path interference, can be accounted for. In the limit of an adiabatic unimolecular reaction proceeding on a single electronic state, NAST reduces to the traditional transition state theory. Because NAST requires molecular properties at only a few points on potential energy surfaces, it can be applied to large molecular systems, used with accurate high-level electronic structure methods, and employed to study slow nonadiabatic processes. The essential NAST input data include the nuclear Hessian at the reactant minimum, as well as the nuclear Hessians, energy gradients, and spin–orbit coupling at the minimum energy crossing point (MECP) between two states. The additional computational tools included in the NAST package can be used to extract the required input data from the output files of electronic structure packages, calculate the effective Hessian at the MECP, and fit the reaction coordinate for more advanced NAST calculations. We describe the theory, its implementation, and three examples of application to different molecular systems.
Vsevolod D. Dergachev, Mitra Rooein, Ilya D. Dergachev, Aleksandr O. Lykhin, Robert C. Mauban, Sergey A. Varganov

Open Access

Evolution of the Automatic Rhodopsin Modeling (ARM) Protocol
Abstract
In recent years, photoactive proteins such as rhodopsins have become a common target for cutting-edge research in the field of optogenetics. Alongside wet-lab research, computational methods are also developing rapidly to provide the necessary tools to analyze and rationalize experimental results and, most of all, drive the design of novel systems. The Automatic Rhodopsin Modeling (ARM) protocol is focused on providing exactly the necessary computational tools to study rhodopsins, those being either natural or resulting from mutations. The code has evolved along the years to finally provide results that are reproducible by any user, accurate and reliable so as to replicate experimental trends. Furthermore, the code is efficient in terms of necessary computing resources and time, and scalable in terms of both number of concurrent calculations as well as features. In this review, we will show how the code underlying ARM achieved each of these properties.
Laura Pedraza González, Leonardo Barneschi, Daniele Padula, Luca De Vico, Massimo Olivucci
Coupled- and Independent-Trajectory Approaches Based on the Exact Factorization Using the PyUNIxMD Package
Abstract
We present mixed quantum-classical approaches based on the exact factorization framework. The electron–nuclear correlation term in the exact factorization enables us to deal with quantum coherences by accounting for electronic and nuclear nonadiabatic couplings effectively within classical nuclei approximation. We compare coupled- and independent-trajectory approximations with each other to understand algorithms in description of the bifurcation of nuclear wave packets and the correct spatial distribution of electronic wave functions along with nuclear trajectories. Finally, we show numerical results for comparisons of coupled- and independenttrajectory approaches for the photoisomerization of a protonated Schiff base from excited state molecular dynamics (ESMD) simulations with the recently developed Python-based ESMD code, namely, the PyUNIxMD program.
Tae In Kim, Jong Kwon Ha, Seung Kyu Min
The Static–Dynamic–Static Family of Methods for Strongly Correlated Electrons: Methodology and Benchmarking
Abstract
A series of methods (SDSCI, SDSPT2, iCI, iCIPT2, iCISCF(2), iVI, and iCAS) is introduced to accurately describe strongly correlated systems of electrons. Born from the (restricted) static–dynamic–static (SDS) framework for designing manyelectron wave functions, SDSCI is a minimal multireference (MR) configuration interaction (CI) approach that constructs and diagonalizes a 3N P × 3N P matrix for N P states, regardless of the numbers of orbitals and electrons to be correlated. If the full molecular Hamiltonian H in the QHQ block (which describes couplings between functions of the first-order interaction space Q) of the SDSCI CI matrix is replaced with a zeroth-order Hamiltonian H 0 before the diagonalization is taken, we obtain SDSPT2, a CI-like second-order perturbation theory (PT2). Unlike most variants of MRPT2, SDSPT2 treats single and multiple states in the same way and is particularly advantageous in the presence of near degeneracy. On the other hand, if the SDSCI procedure is repeated until convergence, we will have iterative CI (iCI), which can converge quickly from the above to the exact solutions (full CI) even when starting with a poor guess. When further combined with the selection of important configurations followed by a PT2 treatment of dynamic correlation, iCI becomes iCIPT2, which is a near-exact theory for medium-sized systems. The microiterations of iCI for relaxing the coefficients of contracted many-electron functions can be generalized to an iterative vector interaction (iVI) approach for finding exterior or interior roots of a given matrix, in which the dimension of the search subspace is fixed by either the number of target roots or the user-specified energy window. Naturally, iCIPT2 can be employed as the active space solver of the complete active space (CAS) self-consistent field, leading to iCISCF(2), which can further be combined with iCAS for automated selection of active orbitals and assurance of the same CAS for all states and all geometries. The methods are calibrated by taking the Thiel set of benchmark systems as examples. Results for the corresponding cations, a new set of benchmark systems, are also reported.
Yangyang Song, Yang Guo, Yibo Lei, Ning Zhang, Wenjian Liu
Ensemble Density Functional Theory of Neutral and Charged Excitations
Exact Formulations, Standard Approximations, and Open Questions
Abstract
Recent progress in the field of (time-independent) ensemble density-functional theory (DFT) for excited states are reviewed. Both Gross–Oliveira–Kohn (GOK) and N-centered ensemble formalisms, which are mathematically very similar and allow for an in-principle-exact description of neutral and charged electronic excitations, respectively, are discussed. Key exact results, for example, the equivalence between the infamous derivative discontinuity problem and the description of weight dependencies in the ensemble exchange-correlation density functional, are highlighted. The variational evaluation of orbital-dependent ensemble Hartree-exchange (Hx) energies is discussed in detail. We show in passing that state-averaging individual exact Hx energies can lead to severe (although solvable) v-representability issues. Finally, we explore the possibility of using the concept of density-driven correlation, which has been introduced recently and does not exist in regular ground-state DFT, for improving state-of-the-art correlation density-functional approximations for ensembles. The present review reflects the efforts of a growing community to turn ensemble DFT into a rigorous and reliable low-cost computational method for excited states. We hope that, in the near future, this contribution will stimulate new formal and practical developments in the field.
Filip Cernatic, Bruno Senjean, Vincent Robert, Emmanuel Fromager
Metadaten
Titel
New Horizons in Computational Chemistry Software
herausgegeben von
Dr. Michael Filatov
Prof. Cheol H. Choi
Prof. Dr. Massimo Olivucci
Copyright-Jahr
2022
Electronic ISBN
978-3-031-07658-9
Print ISBN
978-3-031-07657-2
DOI
https://doi.org/10.1007/978-3-031-07658-9