Skip to main content
Erschienen in: Designs, Codes and Cryptography 2/2017

29.11.2016

New optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4

verfasst von: Jingyuan Chen, Lijun Ji, Yun Li

Erschienen in: Designs, Codes and Cryptography | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optical orthogonal signature pattern codes (OOSPCs) play an important role in a novel type of optical code-division multiple-access network for 2-dimensional image transmission. There is a one-to-one correspondence between an \((m, n, w, \lambda )\)-OOSPC and a \((\lambda +1)\)-(mnw, 1) packing design admitting an automorphism group isomorphic to \(\mathbb {Z}_m\times \mathbb {Z}_n\). In 2010, Sawa gave a construction of an (mn, 4, 2)-OOSPC from a one-factor of Köhler graph of \(\mathbb {Z}_m\times \mathbb {Z}_n\) which contains a unique element of order 2. In this paper, we study the existence of one-factor of Köhler graph of \(\mathbb {Z}_m\times \mathbb {Z}_n\) having three elements of order 2. It is proved that there is a one-factor in the Köhler graph of \(\mathbb {Z}_{2^{\epsilon }p}\times \mathbb {Z}_{2^{\epsilon '}}\) relative to the Sylow 2-subgroup if there is an S-cyclic Steiner quadruple system of order 2p, where \(p\equiv 5\pmod {12}\) is a prime and \(1\le \epsilon ,\epsilon '\le 2\). Using this one-factor, we construct a strictly \(\mathbb {Z}_{2^{\epsilon }p}\times \mathbb {Z}_{2^{\epsilon '}}\)-invariant regular \(G^*(p,2^{\epsilon +\epsilon '},4,3)\) relative to the Sylow 2-subgroup. By using the known S-cyclic SQS(2p) and a recursive construction for strictly \(\mathbb {Z}_{m}\times \mathbb {Z}_{n}\)-invariant regular G-designs, we construct more strictly \(\mathbb {Z}_{m}\times \mathbb {Z}_{n}\)-invariant 3-(mn, 4, 1) packing designs. Consequently, there is an optimal \((2^{\epsilon }m,2^{\epsilon '}n,4,2)\)-OOSPC for any \(\epsilon ,\epsilon '\in \{0,1,2\}\) with \(\epsilon +\epsilon '>0\) and an optimal (6m, 6n, 4, 2)-OOSPC where mn are odd integers whose all prime divisors from the set \(\{p\equiv 5\pmod {12}:p\) is a prime, \(p<\)1,500,000}.
Literatur
1.
Zurück zum Zitat Alderson T.L., Mellinger K.E.: 2-Dimensional optical orthogonal codes from singer groups. Discret. Appl. Math. 157, 3008–3019 (2009).MathSciNetCrossRefMATH Alderson T.L., Mellinger K.E.: 2-Dimensional optical orthogonal codes from singer groups. Discret. Appl. Math. 157, 3008–3019 (2009).MathSciNetCrossRefMATH
2.
3.
4.
5.
Zurück zum Zitat Brickell E.F., Wei V.K.: Optical orthogonal codes and cyclic block designs. Congr. Numer. 58, 175–192 (1987).MathSciNetMATH Brickell E.F., Wei V.K.: Optical orthogonal codes and cyclic block designs. Congr. Numer. 58, 175–192 (1987).MathSciNetMATH
6.
Zurück zum Zitat Cao H., Wei R., Su Y.: Combinatorial constructions for optimal optical two-dimensional orthogonal codes. IEEE Trans. Inf. Theory 55, 1387–1394 (2009).CrossRefMATH Cao H., Wei R., Su Y.: Combinatorial constructions for optimal optical two-dimensional orthogonal codes. IEEE Trans. Inf. Theory 55, 1387–1394 (2009).CrossRefMATH
7.
Zurück zum Zitat Chen J., Ji L., Li Y.: Combinatorial constructions of optimal \((m, n,4,2)\) optical orthogonal signature pattern codes. arXiv:1511.09289v2 Chen J., Ji L., Li Y.: Combinatorial constructions of optimal \((m, n,4,2)\) optical orthogonal signature pattern codes. arXiv:​1511.​09289v2
8.
Zurück zum Zitat Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis, and applications. IEEE Trans. Inf. Theory 35, 595–604 (1989).MathSciNetCrossRefMATH Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis, and applications. IEEE Trans. Inf. Theory 35, 595–604 (1989).MathSciNetCrossRefMATH
9.
Zurück zum Zitat Colbourn C.J., Dinitz J.H., Stinson D.R.: Applications of combinatorial designs to communications, cryptography, and networking. In: London Mathematical Society Lecture Note Series, vol 267, pp. 37–100 (1999). Colbourn C.J., Dinitz J.H., Stinson D.R.: Applications of combinatorial designs to communications, cryptography, and networking. In: London Mathematical Society Lecture Note Series, vol 267, pp. 37–100 (1999).
10.
Zurück zum Zitat Feng T., Chang Y.: Combinatorial constructions for two-dimensional optical orthogonal codes with \(\lambda =2\). IEEE Trans. Inf. Theory 57, 6796–6819 (2011).MathSciNetCrossRefMATH Feng T., Chang Y.: Combinatorial constructions for two-dimensional optical orthogonal codes with \(\lambda =2\). IEEE Trans. Inf. Theory 57, 6796–6819 (2011).MathSciNetCrossRefMATH
11.
Zurück zum Zitat Feng T., Chang Y., Ji L.: Constructions for strictly cyclic \(3\)-designs and applications to optimal OOCs with \(\lambda =2\). J. Comb. Theory (A) 115, 1527–1551 (2008).MathSciNetCrossRefMATH Feng T., Chang Y., Ji L.: Constructions for strictly cyclic \(3\)-designs and applications to optimal OOCs with \(\lambda =2\). J. Comb. Theory (A) 115, 1527–1551 (2008).MathSciNetCrossRefMATH
12.
Zurück zum Zitat Fitting F.: Zyklische Lösungen des Steiner’schen Problems. Nieuw Arch. Wisk. 11(2), 140–148 (1915). Fitting F.: Zyklische Lösungen des Steiner’schen Problems. Nieuw Arch. Wisk. 11(2), 140–148 (1915).
14.
Zurück zum Zitat Hassan A.A., Hershey J.E., Riza N.A.: Spatial optical CDMA. IEEE J. Sel. Areas Commun. 13, 609–613 (1995).CrossRef Hassan A.A., Hershey J.E., Riza N.A.: Spatial optical CDMA. IEEE J. Sel. Areas Commun. 13, 609–613 (1995).CrossRef
17.
Zurück zum Zitat Kitayama K.: Novel spatial spread spectrum based fiber optic CDMA networks for image transmission. IEEE J. Sel. Areas Commun. 12, 762–772 (1994).CrossRef Kitayama K.: Novel spatial spread spectrum based fiber optic CDMA networks for image transmission. IEEE J. Sel. Areas Commun. 12, 762–772 (1994).CrossRef
18.
Zurück zum Zitat Köhler E.: Zyklische Quadrupelsysteme, Abh. Math. Sem. Univ. Hamburg XLVIII, 1–24 (1978). Köhler E.: Zyklische Quadrupelsysteme, Abh. Math. Sem. Univ. Hamburg XLVIII, 1–24 (1978).
20.
Zurück zum Zitat Maric S.V., Lau V.K.N.: Multirate fiber-optic CDMA: system design and performance analysis. J. Lightwave Technol. 16, 9–17 (1998).CrossRef Maric S.V., Lau V.K.N.: Multirate fiber-optic CDMA: system design and performance analysis. J. Lightwave Technol. 16, 9–17 (1998).CrossRef
21.
22.
Zurück zum Zitat Munemasa A., Sawa M.: Steiner quadruple systems with point-regular abelian automorphism groups. J. Stat. Theory Pract. 6, 97–128 (2012).MathSciNetCrossRef Munemasa A., Sawa M.: Steiner quadruple systems with point-regular abelian automorphism groups. J. Stat. Theory Pract. 6, 97–128 (2012).MathSciNetCrossRef
23.
Zurück zum Zitat Omrani R., Garg G., Kumar P.V., Elia P., Bhambhani P.: Large families of optimal two-dimensional optical orthogonal codes. IEEE Trans. Inf. Theory 58, 1163–1185 (2012).MathSciNetCrossRefMATH Omrani R., Garg G., Kumar P.V., Elia P., Bhambhani P.: Large families of optimal two-dimensional optical orthogonal codes. IEEE Trans. Inf. Theory 58, 1163–1185 (2012).MathSciNetCrossRefMATH
24.
Zurück zum Zitat Pan R., Chang Y.: Further results on optimal \((m, n, 4, 1)\) optical orthogonal signature pattern codes. Sci. Sin. Math. 44, 1141–1152 (2014).CrossRef Pan R., Chang Y.: Further results on optimal \((m, n, 4, 1)\) optical orthogonal signature pattern codes. Sci. Sin. Math. 44, 1141–1152 (2014).CrossRef
25.
Zurück zum Zitat Pan R., Chang Y.: \((m, n, 3, 1)\) Optical orthogonal signature pattern codes with maximum possible size. IEEE Trans. Inf. Theory 61, 1139–1148 (2015).MathSciNetCrossRefMATH Pan R., Chang Y.: \((m, n, 3, 1)\) Optical orthogonal signature pattern codes with maximum possible size. IEEE Trans. Inf. Theory 61, 1139–1148 (2015).MathSciNetCrossRefMATH
26.
Zurück zum Zitat Piotrowski W.: Untersuchungen \(\ddot{u}\)ber S-zyklische quadrupelsysteme, Dissertation, University of Hamburg (1985). Piotrowski W.: Untersuchungen \(\ddot{u}\)ber S-zyklische quadrupelsysteme, Dissertation, University of Hamburg (1985).
27.
Zurück zum Zitat Salehi J.A., Brackett C.A.: Code-division multiple access techniques in optical fiber networks: part I and part II. IEEE Trans. Commun. 37, 824–842 (1989).CrossRef Salehi J.A., Brackett C.A.: Code-division multiple access techniques in optical fiber networks: part I and part II. IEEE Trans. Commun. 37, 824–842 (1989).CrossRef
28.
Zurück zum Zitat Sawa M.: Optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4. IEEE Trans. Inf. Theory 56, 3613–3620 (2010).MathSciNetCrossRefMATH Sawa M.: Optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4. IEEE Trans. Inf. Theory 56, 3613–3620 (2010).MathSciNetCrossRefMATH
29.
Zurück zum Zitat Sawa M., Kageyama S.: Optimal optical orthogonal signature pattern codes of weight 3. Biom. Lett. 46, 89–102 (2009). Sawa M., Kageyama S.: Optimal optical orthogonal signature pattern codes of weight 3. Biom. Lett. 46, 89–102 (2009).
30.
32.
33.
Zurück zum Zitat Siemon H.: A number theoretic conjecture and the existence of \(S\)-cyclic Steiner quadruple systems. Des. Codes Cryptogr. 13, 63–94 (1998).MathSciNetCrossRefMATH Siemon H.: A number theoretic conjecture and the existence of \(S\)-cyclic Steiner quadruple systems. Des. Codes Cryptogr. 13, 63–94 (1998).MathSciNetCrossRefMATH
34.
Zurück zum Zitat Stinson D.R., Wei R., Yin J.: Packings. In: Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, pp. 550–556. CRC Press, Boca Raton (2007). Stinson D.R., Wei R., Yin J.: Packings. In: Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, pp. 550–556. CRC Press, Boca Raton (2007).
35.
Zurück zum Zitat Sun S., Yin H., Wang Z., Xu A.: A new family of 2-D optical orthogonal codes and analysis of its performance in optical CDMA access networks. J. Lightwave Technol. 24, 1646–1653 (2006).CrossRef Sun S., Yin H., Wang Z., Xu A.: A new family of 2-D optical orthogonal codes and analysis of its performance in optical CDMA access networks. J. Lightwave Technol. 24, 1646–1653 (2006).CrossRef
36.
Zurück zum Zitat Yang G.C., Kwong W.C.: Two-dimensional spatial signature patterns. IEEE Trans. Commun. 44, 184–191 (1996).CrossRef Yang G.C., Kwong W.C.: Two-dimensional spatial signature patterns. IEEE Trans. Commun. 44, 184–191 (1996).CrossRef
37.
Zurück zum Zitat Yang G.C., Kwong W.C.: Performance comparison of multiwavelength CDMA and WDMA + CDMA for fiber-optic networks. IEEE Trans. Commun. 45, 1426–1434 (1997).CrossRef Yang G.C., Kwong W.C.: Performance comparison of multiwavelength CDMA and WDMA + CDMA for fiber-optic networks. IEEE Trans. Commun. 45, 1426–1434 (1997).CrossRef
38.
Zurück zum Zitat Zhuralev A.A., Keranen M.S., Kreher D.L.: Small group divisible Steiner quadruple systems. Electron. J. Comb. 15(1) Research paper 40 (2008). Zhuralev A.A., Keranen M.S., Kreher D.L.: Small group divisible Steiner quadruple systems. Electron. J. Comb. 15(1) Research paper 40 (2008).
Metadaten
Titel
New optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4
verfasst von
Jingyuan Chen
Lijun Ji
Yun Li
Publikationsdatum
29.11.2016
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 2/2017
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-016-0310-8

Weitere Artikel der Ausgabe 2/2017

Designs, Codes and Cryptography 2/2017 Zur Ausgabe