Skip to main content

13.05.2024 | Original Paper

New results of sparse permutation polynomials with trace functions over \(\mathbb {F}_{q^n}\)

verfasst von: Yan-Ping Wang, Zhengbang Zha

Erschienen in: Applicable Algebra in Engineering, Communication and Computing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Permutation polynomials with sparse forms over finite fields attract researchers’ great interest and have important applications in many areas of mathematics and engineering. In this paper, by investigating the exponents (si) and the coefficients \(a,b\in \mathbb {F}_{q}^{*}\), we present some new results of permutation polynomials of the form \(f(x)= ax^{q^i(q^{2}-q+1)} + bx^{s} + \textrm{Tr}_{q^n/q}(x)\) over \(\mathbb {F}_{q^n}\) (\(n=2\) or 3). The permutation property of the new results is given by studying the number of solutions of special equations over \(\mathbb {F}_{q^n}\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cao, X., Hu, L.: New methods for generating permutation polynomials over finite fields. Finite Fields Appl. 17, 493–503 (2011)MathSciNetCrossRef Cao, X., Hu, L.: New methods for generating permutation polynomials over finite fields. Finite Fields Appl. 17, 493–503 (2011)MathSciNetCrossRef
2.
Zurück zum Zitat Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Springer, Berlin (2007)CrossRef Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Springer, Berlin (2007)CrossRef
3.
Zurück zum Zitat Ding, C., Xiang, Q., Yuan, J., Yuan, P.: Explicit classes of permutation polynomials of \(\mathbb{F} _{3^{3m}}\). Sci. China, Ser. A Math. 52, 639–647 (2009)CrossRef Ding, C., Xiang, Q., Yuan, J., Yuan, P.: Explicit classes of permutation polynomials of \(\mathbb{F} _{3^{3m}}\). Sci. China, Ser. A Math. 52, 639–647 (2009)CrossRef
4.
Zurück zum Zitat Dobbertin, H.: Almost perfect nonlinear power functions on \(\mathbb{G}\mathbb{F} (2^{n})\): the Niho case. Inf. Comput. 151, 57–72 (1999)CrossRef Dobbertin, H.: Almost perfect nonlinear power functions on \(\mathbb{G}\mathbb{F} (2^{n})\): the Niho case. Inf. Comput. 151, 57–72 (1999)CrossRef
5.
Zurück zum Zitat Gupta, R.: Several new permutation quadrinomials over finite fields of odd characteristic. Des. Codes Cryptogr. 88, 223–239 (2020)MathSciNetCrossRef Gupta, R.: Several new permutation quadrinomials over finite fields of odd characteristic. Des. Codes Cryptogr. 88, 223–239 (2020)MathSciNetCrossRef
6.
Zurück zum Zitat Gupta, R.: More results about a class of quadrinomials over finite fields of odd characteristic. Commun. Algebra 50, 324–333 (2022)MathSciNetCrossRef Gupta, R.: More results about a class of quadrinomials over finite fields of odd characteristic. Commun. Algebra 50, 324–333 (2022)MathSciNetCrossRef
7.
Zurück zum Zitat Hou, X.: Permutation polynomials over finite fields-a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)MathSciNetCrossRef Hou, X.: Permutation polynomials over finite fields-a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)MathSciNetCrossRef
8.
9.
Zurück zum Zitat Laigle-Chapuy, Y.: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13, 58–70 (2007)MathSciNetCrossRef Laigle-Chapuy, Y.: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13, 58–70 (2007)MathSciNetCrossRef
10.
Zurück zum Zitat Li, K., Qu, L., Li, C., Chen, H.: On a conjecture about a class of permutation quadrinomials. Finite Fields Appl. 66, 101690 (2020)MathSciNetCrossRef Li, K., Qu, L., Li, C., Chen, H.: On a conjecture about a class of permutation quadrinomials. Finite Fields Appl. 66, 101690 (2020)MathSciNetCrossRef
11.
Zurück zum Zitat Li, N., Xiong, M., Zeng, X.: On permutation quadrinomials and \(4\)-uniform BCT. IEEE Trans. Inf. Theory 67, 4845–4855 (2021)MathSciNetCrossRef Li, N., Xiong, M., Zeng, X.: On permutation quadrinomials and \(4\)-uniform BCT. IEEE Trans. Inf. Theory 67, 4845–4855 (2021)MathSciNetCrossRef
12.
Zurück zum Zitat Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics. Cambridge University Press, Cambridge (1997) Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics. Cambridge University Press, Cambridge (1997)
13.
Zurück zum Zitat Ma, J., Ge, G.: A note on permutation polynomials over finite fields. Finite Fields Appl. 48, 261–270 (2017)MathSciNetCrossRef Ma, J., Ge, G.: A note on permutation polynomials over finite fields. Finite Fields Appl. 48, 261–270 (2017)MathSciNetCrossRef
14.
Zurück zum Zitat Mullen, G.L.: Permutation polynomials over finite fields. In: Proc. Conf. Finite Fields Their Applications. In: Lect. Notes Pure Appl. Math., Marcel Dekker, vol. 141, pp. 131–151 (1993) Mullen, G.L.: Permutation polynomials over finite fields. In: Proc. Conf. Finite Fields Their Applications. In: Lect. Notes Pure Appl. Math., Marcel Dekker, vol. 141, pp. 131–151 (1993)
15.
Zurück zum Zitat Oliveira, J.A., Martínez, F.E.B.: Permutation binomials over finite fields. Discrete Math. 345, 112732 (2022)MathSciNetCrossRef Oliveira, J.A., Martínez, F.E.B.: Permutation binomials over finite fields. Discrete Math. 345, 112732 (2022)MathSciNetCrossRef
16.
Zurück zum Zitat Park, Y.H., Lee, J.B.: Permutation polynomials and group permutation polynomials. Bull. Aust. Math. Soc. 63, 67–74 (2001)MathSciNetCrossRef Park, Y.H., Lee, J.B.: Permutation polynomials and group permutation polynomials. Bull. Aust. Math. Soc. 63, 67–74 (2001)MathSciNetCrossRef
18.
Zurück zum Zitat Tu, Z., Liu, X., Zeng, X.: A revisit to a class of permutation quadrinomials. Finite Fields Appl. 59, 57–85 (2019)MathSciNetCrossRef Tu, Z., Liu, X., Zeng, X.: A revisit to a class of permutation quadrinomials. Finite Fields Appl. 59, 57–85 (2019)MathSciNetCrossRef
19.
Zurück zum Zitat Tu, Z., Zeng, X., Helleseth, T.: A class of permutation quadrinomials. Discrete Math. 341, 3010–3020 (2018)MathSciNetCrossRef Tu, Z., Zeng, X., Helleseth, T.: A class of permutation quadrinomials. Discrete Math. 341, 3010–3020 (2018)MathSciNetCrossRef
20.
Zurück zum Zitat Wan, D., Lidl, R.: Permutation polynomials of the form \(x^rf(x^{(q-1)/d})\) and their group structure. Monatshefte Math. 112, 149–163 (1991)MathSciNetCrossRef Wan, D., Lidl, R.: Permutation polynomials of the form \(x^rf(x^{(q-1)/d})\) and their group structure. Monatshefte Math. 112, 149–163 (1991)MathSciNetCrossRef
21.
Zurück zum Zitat Wang, Q.: Cyclotomic mapping permutation polynomials over finite fields. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) Sequences, Subsequences, and Consequences. Lect. Notes Comput. Sci. Springer, Berlin, vol. 4893, pp. 119–128 (2007) Wang, Q.: Cyclotomic mapping permutation polynomials over finite fields. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) Sequences, Subsequences, and Consequences. Lect. Notes Comput. Sci. Springer, Berlin, vol. 4893, pp. 119–128 (2007)
22.
Zurück zum Zitat Wang, Q.: Polynomials over finite fields: an index approach. In: The Proceedings of Pseudo-Randomness and Finite Fields, Multivariate Algorithms and their Foundations in Number Theory, Degruyter, pp. 1–30, (2019) Wang, Q.: Polynomials over finite fields: an index approach. In: The Proceedings of Pseudo-Randomness and Finite Fields, Multivariate Algorithms and their Foundations in Number Theory, Degruyter, pp. 1–30, (2019)
23.
Zurück zum Zitat Wang, Y., Zha, Z., Du, X., Zheng, D.: Several classes of permutation polynomials with trace functions over \(\mathbb{F} _{p^n}\). Appl. Algebra Eng. Commun. Comput. 35, 337–349 (2024)CrossRef Wang, Y., Zha, Z., Du, X., Zheng, D.: Several classes of permutation polynomials with trace functions over \(\mathbb{F} _{p^n}\). Appl. Algebra Eng. Commun. Comput. 35, 337–349 (2024)CrossRef
24.
Zurück zum Zitat Wu, D., Yuan, P., Ding, C., Ma, Y.: Permutation trinomials over \(\mathbb{F} _{2^m}\). Finite Fields Appl. 46, 38–56 (2017)MathSciNetCrossRef Wu, D., Yuan, P., Ding, C., Ma, Y.: Permutation trinomials over \(\mathbb{F} _{2^m}\). Finite Fields Appl. 46, 38–56 (2017)MathSciNetCrossRef
25.
Zurück zum Zitat Xu, G., Cao, X., Ping, J.: Some permutation pentanomials over finite fields with even characteristic. Finite Fields Appl. 49, 212–226 (2018)MathSciNetCrossRef Xu, G., Cao, X., Ping, J.: Some permutation pentanomials over finite fields with even characteristic. Finite Fields Appl. 49, 212–226 (2018)MathSciNetCrossRef
26.
Zurück zum Zitat Yuan, P., Ding, C.: Permutation polynomials over finite fields from a powerful lemma. Finite Fields Appl. 17, 560–574 (2011)MathSciNetCrossRef Yuan, P., Ding, C.: Permutation polynomials over finite fields from a powerful lemma. Finite Fields Appl. 17, 560–574 (2011)MathSciNetCrossRef
27.
Zurück zum Zitat Zha, Z., Hu, L., Zhang, Z.: New results on permutation polynomials of the form \((x^{p^m} - x + \delta )^{s} + x^{p^m} + x\) over \(\mathbb{F} _{p^{2m}}\). Cryptogr. Commun. 10, 567–578 (2018)MathSciNetCrossRef Zha, Z., Hu, L., Zhang, Z.: New results on permutation polynomials of the form \((x^{p^m} - x + \delta )^{s} + x^{p^m} + x\) over \(\mathbb{F} _{p^{2m}}\). Cryptogr. Commun. 10, 567–578 (2018)MathSciNetCrossRef
28.
Zurück zum Zitat Zheng, D., Yuan, M., Yu, L.: Two types of permutation polynomials with special forms. Finite Fields Appl. 56, 1–16 (2019)MathSciNetCrossRef Zheng, D., Yuan, M., Yu, L.: Two types of permutation polynomials with special forms. Finite Fields Appl. 56, 1–16 (2019)MathSciNetCrossRef
29.
Zurück zum Zitat Zheng, L., Liu, B., Kan, H., Peng, J., Tang, D.: More classes of permutation quadrinomials from Niho exponents in characteristic two. Finite Fields Appl. 78, 101962 (2022)MathSciNetCrossRef Zheng, L., Liu, B., Kan, H., Peng, J., Tang, D.: More classes of permutation quadrinomials from Niho exponents in characteristic two. Finite Fields Appl. 78, 101962 (2022)MathSciNetCrossRef
30.
Zurück zum Zitat Zieve, M.E.: Some families of permutation polynomials over finite fields. Int. J. Number Theory 4, 851–857 (2008)MathSciNetCrossRef Zieve, M.E.: Some families of permutation polynomials over finite fields. Int. J. Number Theory 4, 851–857 (2008)MathSciNetCrossRef
Metadaten
Titel
New results of sparse permutation polynomials with trace functions over
verfasst von
Yan-Ping Wang
Zhengbang Zha
Publikationsdatum
13.05.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00658-2