Skip to main content
Erschienen in: Quantum Information Processing 9/2018

01.09.2018

New scheme for measurement-device-independent quantum key distribution

verfasst von: Lian Wang, Yuan-Yuan Zhou, Xue-Jun Zhou, Xiao Chen, Zheng Zhang

Erschienen in: Quantum Information Processing | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a new scheme for measurement-device-independent quantum key distribution (MDI-QKD) with a two-mode state source. In this scheme, the trigger state is split into different paths and detected at both senders; thus, four types of detection events can be obtained. Based on these events, the signal state is divided into four non-empty sets that can be used for parameter estimation and key extraction. Additionally, we carry out a performance analysis on the scheme with two-intensity (vacuum state and signal state) heralded single-photon sources. We also numerically study the statistical fluctuation in the actual system. Our simulations show that the error rate and the secure transmission distance of our two-intensity scheme are better than those of existing three- and four-intensity MDI-QKD schemes with different light sources. Considering statistical fluctuations, the maximum secure distance of our scheme can reach 344 km when the data length is 1013 and remains as long as 250 km when the data length is 1010. Moreover, our scheme improves the system performance and reduces the challenges of implementing the system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennett C.H., Brassard G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE, New York, pp. 175–179 (1984) Bennett C.H., Brassard G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE, New York, pp. 175–179 (1984)
2.
Zurück zum Zitat Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)MathSciNetMATH Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)MathSciNetMATH
3.
Zurück zum Zitat Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)ADSCrossRef Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)ADSCrossRef
4.
Zurück zum Zitat Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution. Phys. Rev. Lett. 85, 441–444 (2000)ADSCrossRef Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution. Phys. Rev. Lett. 85, 441–444 (2000)ADSCrossRef
6.
Zurück zum Zitat Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret key rate for QKD protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005)ADSCrossRef Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret key rate for QKD protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005)ADSCrossRef
7.
Zurück zum Zitat Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)ADSCrossRef Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)ADSCrossRef
8.
Zurück zum Zitat Sun, S.H., Gao, M., Jiang, M.S., Li, C.Y., Liang, L.M.: Partially random phase attack to the practical two-way quantum-key-distribution system. Phys. Rev. A 85, 032304 (2012)ADSCrossRef Sun, S.H., Gao, M., Jiang, M.S., Li, C.Y., Liang, L.M.: Partially random phase attack to the practical two-way quantum-key-distribution system. Phys. Rev. A 85, 032304 (2012)ADSCrossRef
9.
Zurück zum Zitat Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73–82 (2007)MathSciNetMATH Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73–82 (2007)MathSciNetMATH
10.
Zurück zum Zitat Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007)ADSCrossRef Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007)ADSCrossRef
11.
Zurück zum Zitat Lydersen, L., Wiechers, C., Wittinann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4, 686–689 (2010)ADSCrossRef Lydersen, L., Wiechers, C., Wittinann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4, 686–689 (2010)ADSCrossRef
12.
Zurück zum Zitat Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRef Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRef
13.
Zurück zum Zitat Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRef Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRef
14.
Zurück zum Zitat Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)ADSCrossRef Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)ADSCrossRef
15.
Zurück zum Zitat Pironio, S., Acín, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009)ADSCrossRef Pironio, S., Acín, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009)ADSCrossRef
16.
Zurück zum Zitat Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRef Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRef
17.
Zurück zum Zitat Schiavon, M., Vallone, G., Ticozzi, F., Villoresi, P.: Heralded single-photon sources for quantum-key-distribution applications. Phys. Rev. A 93, 012331 (2016)ADSCrossRef Schiavon, M., Vallone, G., Ticozzi, F., Villoresi, P.: Heralded single-photon sources for quantum-key-distribution applications. Phys. Rev. A 93, 012331 (2016)ADSCrossRef
18.
Zurück zum Zitat Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)ADSCrossRef Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)ADSCrossRef
19.
Zurück zum Zitat Zhou, Y.H., Yu, Z.W., Wang, X.B.: Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100%. Phys. Rev. A 89, 052325 (2014)ADSCrossRef Zhou, Y.H., Yu, Z.W., Wang, X.B.: Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100%. Phys. Rev. A 89, 052325 (2014)ADSCrossRef
20.
Zurück zum Zitat Zhou, Y.Y., Zhou, X.J., Su, B.B.: A measurement-device-independent quantum key distribution protocol with a heralded single photon source. Optoelectron. Lett. 12, 148–151 (2016)ADSCrossRef Zhou, Y.Y., Zhou, X.J., Su, B.B.: A measurement-device-independent quantum key distribution protocol with a heralded single photon source. Optoelectron. Lett. 12, 148–151 (2016)ADSCrossRef
21.
Zurück zum Zitat Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)ADSCrossRef Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)ADSCrossRef
22.
Zurück zum Zitat Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett. 99, 180503 (2007)ADSCrossRef Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett. 99, 180503 (2007)ADSCrossRef
23.
Zurück zum Zitat Li, Y., Bao, W.S., Li, H.W., Zhou, C., Wang, Y.: Passive decoy-state quantum key distribution using weak coherent pulses with intensity fluctuations. Phys. Rev. A 89, 032329 (2014)ADSCrossRef Li, Y., Bao, W.S., Li, H.W., Zhou, C., Wang, Y.: Passive decoy-state quantum key distribution using weak coherent pulses with intensity fluctuations. Phys. Rev. A 89, 032329 (2014)ADSCrossRef
24.
Zurück zum Zitat Shan, Y.Z., Sun, S.H., Ma, X.C., Jiang, M.S., Zhou, Y.L., Liang, L.M.: Measurement-device-independent quantum key distribution with a passive decoy-state method. Phys. Rev. A 90, 042334 (2014)ADSCrossRef Shan, Y.Z., Sun, S.H., Ma, X.C., Jiang, M.S., Zhou, Y.L., Liang, L.M.: Measurement-device-independent quantum key distribution with a passive decoy-state method. Phys. Rev. A 90, 042334 (2014)ADSCrossRef
25.
Zurück zum Zitat Wang, Q., Zhang, C.H., Wang, X.B.: Scheme for realizing passive quantum key distribution with heralded single-photon sources. Phys. Rev. A 93, 032312 (2016)ADSCrossRef Wang, Q., Zhang, C.H., Wang, X.B.: Scheme for realizing passive quantum key distribution with heralded single-photon sources. Phys. Rev. A 93, 032312 (2016)ADSCrossRef
26.
Zurück zum Zitat Ma, X., Lo, H.K.: Quantum key distribution with triggering parametric down-conversion sources. New J. Phys. 10, 073018 (2008)ADSCrossRef Ma, X., Lo, H.K.: Quantum key distribution with triggering parametric down-conversion sources. New J. Phys. 10, 073018 (2008)ADSCrossRef
27.
Zurück zum Zitat Koashi, M., Preskill, J.: Secure quantum key distribution with an uncharacterized source. Phys. Rev. Lett. 90, 057902 (2003)ADSCrossRef Koashi, M., Preskill, J.: Secure quantum key distribution with an uncharacterized source. Phys. Rev. Lett. 90, 057902 (2003)ADSCrossRef
28.
Zurück zum Zitat Ma, X., Fung, C.H.F., Lo, H.K.: Quantum key distribution with entangled photon sources. Phys. Rev. A 76, 012307 (2007)ADSCrossRef Ma, X., Fung, C.H.F., Lo, H.K.: Quantum key distribution with entangled photon sources. Phys. Rev. A 76, 012307 (2007)ADSCrossRef
29.
Zurück zum Zitat Sun, Q.C., Wang, W.L., Liu, Y., Zhou, F., Pelc, J.S., Fejer, M.M., Peng, C.Z., Chen, X.F., Ma, X., Zhang, Q., Pan, J.W.: Experimental passive decoy-state quantum key distribution. Laser Phys. Lett. 11, 085202 (2014)ADSCrossRef Sun, Q.C., Wang, W.L., Liu, Y., Zhou, F., Pelc, J.S., Fejer, M.M., Peng, C.Z., Chen, X.F., Ma, X., Zhang, Q., Pan, J.W.: Experimental passive decoy-state quantum key distribution. Laser Phys. Lett. 11, 085202 (2014)ADSCrossRef
30.
Zurück zum Zitat Curty, M., Ma, X., Qi, B., Moroder, T.: Passive decoy state quantum key distribution with practical light sources. Phys. Rev. A 81, 022310 (2010)ADSCrossRef Curty, M., Ma, X., Qi, B., Moroder, T.: Passive decoy state quantum key distribution with practical light sources. Phys. Rev. A 81, 022310 (2010)ADSCrossRef
31.
Zurück zum Zitat Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)ADSCrossRef Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)ADSCrossRef
32.
Zurück zum Zitat Mori, S., Soderholm, J., Namekata, N., Inoue, S.: On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide. Opt. Commun. 264, 156–162 (2006)ADSCrossRef Mori, S., Soderholm, J., Namekata, N., Inoue, S.: On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide. Opt. Commun. 264, 156–162 (2006)ADSCrossRef
33.
Zurück zum Zitat Ribordy, G., Brendel, J., Gauthier, J.D., Gisin, N., Zbinden, H.: Long-distance entanglement-based quantum key distribution. Phys. Rev. A 63, 012309 (2000)ADSCrossRef Ribordy, G., Brendel, J., Gauthier, J.D., Gisin, N., Zbinden, H.: Long-distance entanglement-based quantum key distribution. Phys. Rev. A 63, 012309 (2000)ADSCrossRef
34.
Zurück zum Zitat Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)ADSCrossRef Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)ADSCrossRef
35.
Zurück zum Zitat Wang, Q., Wang, X.B.: Simulating of the measurement-device-independent quantum key distribution with phase randomized general sources. Sci. Rep. 4, 4612 (2014)ADSCrossRef Wang, Q., Wang, X.B.: Simulating of the measurement-device-independent quantum key distribution with phase randomized general sources. Sci. Rep. 4, 4612 (2014)ADSCrossRef
36.
Zurück zum Zitat Yu, Z.W., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement-device-independent quantum key distribution. Phys. Rev. A 88, 062339 (2013)ADSCrossRef Yu, Z.W., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement-device-independent quantum key distribution. Phys. Rev. A 88, 062339 (2013)ADSCrossRef
37.
Zurück zum Zitat Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)ADSCrossRef Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)ADSCrossRef
38.
Zurück zum Zitat Zhang, Z., Zhao, Q., Razavi, M., Ma, X.: Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A 95, 012333 (2017)ADSCrossRef Zhang, Z., Zhao, Q., Razavi, M., Ma, X.: Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A 95, 012333 (2017)ADSCrossRef
39.
Zurück zum Zitat Zhang, C.H., Luo, S.L., Guo, G.C., Wang, Q.: Approaching the ideal quantum key distribution with two-intensity decoy states. Phys. Rev. A 92, 022332 (2015)ADSCrossRef Zhang, C.H., Luo, S.L., Guo, G.C., Wang, Q.: Approaching the ideal quantum key distribution with two-intensity decoy states. Phys. Rev. A 92, 022332 (2015)ADSCrossRef
40.
Zurück zum Zitat Sun, S.H., Gao, M., Li, C.Y., Liang, L.M.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87, 052329 (2013)ADSCrossRef Sun, S.H., Gao, M., Li, C.Y., Liang, L.M.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87, 052329 (2013)ADSCrossRef
Metadaten
Titel
New scheme for measurement-device-independent quantum key distribution
verfasst von
Lian Wang
Yuan-Yuan Zhou
Xue-Jun Zhou
Xiao Chen
Zheng Zhang
Publikationsdatum
01.09.2018
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 9/2018
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-1991-x

Weitere Artikel der Ausgabe 9/2018

Quantum Information Processing 9/2018 Zur Ausgabe

Neuer Inhalt