Skip to main content
Erschienen in: Journal of Scientific Computing 3/2019

02.02.2019

New Third Order Low-Storage SSP Explicit Runge–Kutta Methods

verfasst von: I. Higueras, T. Roldán

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When a high dimension system of ordinary differential equations is solved numerically, the computer memory capacity may be exhausted. Thus, for such systems, it is important to incorporate low memory usage to some other properties of the scheme. In the context of strong stability preserving (SSP) schemes, some low-storage methods have been considered in the literature. In this paper we study 5-stage third order \(2N^*\) low-storage SSP explicit Runge–Kutta schemes. These are SSP schemes that can be implemented with 2N memory registers, where N is the dimension of the problem, and retain the previous time step approximation. This last property is crucial for a variable step size implementation of the scheme. In this paper, first we show that the optimal SSP methods cannot be implemented with \(2N^*\) memory registers. Next, two non-optimal SSP \(2N^*\) low-storage methods are constructed; although their SSP coefficients are not optimal, they achieve some other interesting properties. Finally, we show some numerical experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: On some new low storage implementations of time advancing Runge–Kutta methods. J. Comput. Appl. Math. 236(15), 3665–3675 (2012)MathSciNetCrossRefMATH Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: On some new low storage implementations of time advancing Runge–Kutta methods. J. Comput. Appl. Math. 236(15), 3665–3675 (2012)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Calvo, M., Franco, J.M., Rández, L.: Minimum storage Runge–Kutta schemes for computational acoustics. Comput. Math. Appl. 45(1), 535–545 (2003)MathSciNetCrossRefMATH Calvo, M., Franco, J.M., Rández, L.: Minimum storage Runge–Kutta schemes for computational acoustics. Comput. Math. Appl. 45(1), 535–545 (2003)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Cavaglieri, D., Bewley, T.: Low-storage implicit/explicit Runge–Kutta schemes for the simulation of stiff high-dimensional ode systems. J. Comput. Phys 286, 172–193 (2015)MathSciNetCrossRefMATH Cavaglieri, D., Bewley, T.: Low-storage implicit/explicit Runge–Kutta schemes for the simulation of stiff high-dimensional ode systems. J. Comput. Phys 286, 172–193 (2015)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42(3), 1073–1093 (2004)MathSciNetCrossRefMATH Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42(3), 1073–1093 (2004)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58(11), 1675–1686 (2008)MathSciNetCrossRefMATH Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58(11), 1675–1686 (2008)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)CrossRefMATH Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)CrossRefMATH
7.
Zurück zum Zitat Gottlieb, S., Ketcheson, D.I., Shu, C.W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38(3), 251–289 (2009)MathSciNetCrossRefMATH Gottlieb, S., Ketcheson, D.I., Shu, C.W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38(3), 251–289 (2009)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefMATH Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Happenhofer, N., Koch, O., Kupka, F.: IMEX methods for the ANTARES code. ASC report, 27 (2011) Happenhofer, N., Koch, O., Kupka, F.: IMEX methods for the ANTARES code. ASC report, 27 (2011)
11.
Zurück zum Zitat Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, 2 revised edn. Springer, Berlin (1993)MATH Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, 2 revised edn. Springer, Berlin (1993)MATH
12.
Zurück zum Zitat Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43(3), 924–948 (2005)MathSciNetCrossRefMATH Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43(3), 924–948 (2005)MathSciNetCrossRefMATH
13.
14.
Zurück zum Zitat Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000)MathSciNetCrossRefMATH Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)MathSciNetCrossRefMATH Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)MathSciNetCrossRefMATH
16.
17.
Zurück zum Zitat Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59(2), 373–392 (2009)MathSciNetCrossRefMATH Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59(2), 373–392 (2009)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Ketcheson, D.I., Parsani, M., Ahmadia, A.J.: Rk-opt: software for the design of Runge–Kutta methods, version 0.2 (2013) Ketcheson, D.I., Parsani, M., Ahmadia, A.J.: Rk-opt: software for the design of Runge–Kutta methods, version 0.2 (2013)
19.
Zurück zum Zitat Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48(3), 303–322 (1986)MathSciNetCrossRefMATH Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48(3), 303–322 (1986)MathSciNetCrossRefMATH
21.
Zurück zum Zitat LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)CrossRefMATH LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)CrossRefMATH
22.
Zurück zum Zitat Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75(253), 183–208 (2006)MathSciNetCrossRefMATH Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75(253), 183–208 (2006)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRefMATH Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRefMATH
25.
26.
Zurück zum Zitat Spijker, M.N.: Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems. Math. Comput. 45(172), 377–392 (1985)MathSciNetCrossRefMATH Spijker, M.N.: Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems. Math. Comput. 45(172), 377–392 (1985)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45(3), 1226–1245 (2008)MathSciNetCrossRefMATH Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45(3), 1226–1245 (2008)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong stability preserving time discretization methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002)MathSciNetCrossRefMATH Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong stability preserving time discretization methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput. Simulat. 62(1–2), 125–135 (2003)MathSciNetCrossRefMATH Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput. Simulat. 62(1–2), 125–135 (2003)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Van Der Houwen, P.J.: Construction of integration formulas for initial value problems. North Holland (1977) Van Der Houwen, P.J.: Construction of integration formulas for initial value problems. North Holland (1977)
Metadaten
Titel
New Third Order Low-Storage SSP Explicit Runge–Kutta Methods
verfasst von
I. Higueras
T. Roldán
Publikationsdatum
02.02.2019
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00916-3

Weitere Artikel der Ausgabe 3/2019

Journal of Scientific Computing 3/2019 Zur Ausgabe