Skip to main content
Erschienen in: Journal of Materials Science 3/2017

16.11.2016 | Original Paper

New understanding of the shape-memory response in thiol-epoxy click systems: towards controlling the recovery process

verfasst von: Alberto Belmonte, Xavier Fernández-Francos, Silvia De la Flor

Erschienen in: Journal of Materials Science | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Our research group has recently found excellent shape-memory response in “thiol-epoxy” thermosets obtained with click-chemistry. In this study, we use their well-designed, homogeneous and tailorable network structures to investigate parameters for better control of the shape-recovery process. We present a new methodology to analyse the shape-recovery process, enabling easy and efficient comparison of shape-memory experiments on the programming conditions. Shape-memory experiments at different programming conditions have been carried out to that end. Additionally, the programming process has been extensively analysed in uniaxial tensile experiments at different shape-memory testing temperatures. The results showed that the shape-memory response for a specific operational design can be optimized by choosing the correct programming conditions and accurately designing the network structure. When programming at a high temperature (T ≫ T g), under high network mobility conditions, high shape-recovery ratios and homogeneous shape-recovery processes are obtained for the network structure and the programmed strain level (ε D ). However, considerably lower stress and strain levels can be achieved. Meanwhile, when programming at temperatures lower than T g, considerably higher stress and strain levels are attained but under low network mobility conditions. The shape-recovery process heavily depends on both the network structure and ε D. Network relaxation occurs during the loading stage, resulting in a noticeable decrease in the shape-recovery rate as ε D increases. Moreover, at a certain level of strain, permanent and non-recoverable deformations may occur, impeding the completion and modifying the whole path of the shape-recovery process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lewis CL, Meng Y, Anthamatten M (2015) Well-defined shape-memory networks with high elastic energy capacity. Macromolecules 48(14):4918–4926CrossRef Lewis CL, Meng Y, Anthamatten M (2015) Well-defined shape-memory networks with high elastic energy capacity. Macromolecules 48(14):4918–4926CrossRef
2.
Zurück zum Zitat Wang A, Li G (2015) Stress memory of a thermoset shape memory polymer. J Appl Polym Sci 132(24):42112 Wang A, Li G (2015) Stress memory of a thermoset shape memory polymer. J Appl Polym Sci 132(24):42112
3.
Zurück zum Zitat Arrieta JS, Diani J, Gilormini P (2014) Cyclic and monotonic testing of free and constrained recovery properties of a chemically crosslinked acrylate. J Appl Polym Sci 131(2):39813CrossRef Arrieta JS, Diani J, Gilormini P (2014) Cyclic and monotonic testing of free and constrained recovery properties of a chemically crosslinked acrylate. J Appl Polym Sci 131(2):39813CrossRef
4.
Zurück zum Zitat Arrieta JS, Diani J, Gilormini P (2014) Experimental characterization and thermoviscoelastic modeling of strain and stress recoveries of an amorphous polymer network. Mech Mater 68:95–103CrossRef Arrieta JS, Diani J, Gilormini P (2014) Experimental characterization and thermoviscoelastic modeling of strain and stress recoveries of an amorphous polymer network. Mech Mater 68:95–103CrossRef
5.
Zurück zum Zitat Anthamatten M, Roddecha S, Li J (2013) Energy storage capacity of shape-memory polymers. Macromolecules 46:42304234CrossRef Anthamatten M, Roddecha S, Li J (2013) Energy storage capacity of shape-memory polymers. Macromolecules 46:42304234CrossRef
6.
Zurück zum Zitat Yakacki CM, Shandas R, Safranski D, Ortega AM, Sassaman K, Gall K (2008) Strong, tailored, biocompatible shape-memory polymer networks. Adv Funct Mater 18:2428–2435CrossRef Yakacki CM, Shandas R, Safranski D, Ortega AM, Sassaman K, Gall K (2008) Strong, tailored, biocompatible shape-memory polymer networks. Adv Funct Mater 18:2428–2435CrossRef
7.
Zurück zum Zitat Lakhera N, Yakacki CM, Nguyen TD, Frick CP (2012) Partially constrained recovery of (meth)acrylate shape-memory polymer networks. J Appl Polym Sci 126:72–82CrossRef Lakhera N, Yakacki CM, Nguyen TD, Frick CP (2012) Partially constrained recovery of (meth)acrylate shape-memory polymer networks. J Appl Polym Sci 126:72–82CrossRef
8.
Zurück zum Zitat Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33CrossRef Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33CrossRef
9.
Zurück zum Zitat Scalet G, Auricchio F, Bonetti E, Castellani L, Ferri D, Pachera M, Scavello F (2015) An experimental, theoretical and numerical investigation of shape memory polymers. Int J Plast 67:127–147CrossRef Scalet G, Auricchio F, Bonetti E, Castellani L, Ferri D, Pachera M, Scavello F (2015) An experimental, theoretical and numerical investigation of shape memory polymers. Int J Plast 67:127–147CrossRef
10.
Zurück zum Zitat Lendlein A, Sauter T (2013) Shape-memory effect in polymers. Macromol Chem Phys 214:1175–1177CrossRef Lendlein A, Sauter T (2013) Shape-memory effect in polymers. Macromol Chem Phys 214:1175–1177CrossRef
11.
Zurück zum Zitat Anis A, Faiz S, Luqman M, Poulose AM, Gulrez SKH, Shaikh H, Al-Zahrani SM (2013) Developments in shape memory polymeric materials. Polym Plast Technol Eng 52:1574–1589CrossRef Anis A, Faiz S, Luqman M, Poulose AM, Gulrez SKH, Shaikh H, Al-Zahrani SM (2013) Developments in shape memory polymeric materials. Polym Plast Technol Eng 52:1574–1589CrossRef
12.
Zurück zum Zitat Habault D, Zhang H, Zhao Y (2013) Light-triggered self-healing and shape-memory polymers. Chem Soc Rev 42:7244–7256CrossRef Habault D, Zhang H, Zhao Y (2013) Light-triggered self-healing and shape-memory polymers. Chem Soc Rev 42:7244–7256CrossRef
13.
Zurück zum Zitat Santhosh Kumar KS, Biju R, Reghunadhan Nair CP (2013) Progress in shape memory epoxy resins. React Funct Polym 73:421–430CrossRef Santhosh Kumar KS, Biju R, Reghunadhan Nair CP (2013) Progress in shape memory epoxy resins. React Funct Polym 73:421–430CrossRef
14.
Zurück zum Zitat Belmonte A, Guzmán D, Fernández-Francos X, De la Flor S (2015) Effect of the network structure and programming temperature on the shape-memory response of thiol-epoxy “click” systems. Polymers 7(10):2146–2164CrossRef Belmonte A, Guzmán D, Fernández-Francos X, De la Flor S (2015) Effect of the network structure and programming temperature on the shape-memory response of thiol-epoxy “click” systems. Polymers 7(10):2146–2164CrossRef
15.
Zurück zum Zitat Belmonte Alberto et al (2016) Network structure dependence on unconstrained isothermal-recovery processes for shape-memory thiol-epoxy “click” systems. Mech Time Depend Mater. doi:10.1007/s11043-016-9322-z Belmonte Alberto et al (2016) Network structure dependence on unconstrained isothermal-recovery processes for shape-memory thiol-epoxy “click” systems. Mech Time Depend Mater. doi:10.​1007/​s11043-016-9322-z
16.
Zurück zum Zitat Feldkamp DM, Rousseau IA (2011) Effect of chemical composition on the deformability of shape-memory epoxies. Macromol Mater Eng 296:1128–1141CrossRef Feldkamp DM, Rousseau IA (2011) Effect of chemical composition on the deformability of shape-memory epoxies. Macromol Mater Eng 296:1128–1141CrossRef
17.
Zurück zum Zitat Binder WH, Sachsenhofer R (2007) “Click” chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54CrossRef Binder WH, Sachsenhofer R (2007) “Click” chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54CrossRef
18.
Zurück zum Zitat Carlborg CF, Vastesson A, Liu Y, Van Der Wijngaart W, Johansson M, Haraldsson T (2014) Functional off-stoichiometry thiol-ene-epoxy thermosets featuring temporally controlled curing stages via an UV/UV dual cure process. J Polym Sci 52(2):604–2615 Carlborg CF, Vastesson A, Liu Y, Van Der Wijngaart W, Johansson M, Haraldsson T (2014) Functional off-stoichiometry thiol-ene-epoxy thermosets featuring temporally controlled curing stages via an UV/UV dual cure process. J Polym Sci 52(2):604–2615
19.
Zurück zum Zitat Flores M, Tomuta AM, Fernández-Francos X, Ramis X, Sangermano M, Serra À (2013) A new two-stage curing system: thiol-ene/epoxy homopolymerization using an allyl terminated hyperbranched polyester as reactive modifier. Polymer 54:5473–5481CrossRef Flores M, Tomuta AM, Fernández-Francos X, Ramis X, Sangermano M, Serra À (2013) A new two-stage curing system: thiol-ene/epoxy homopolymerization using an allyl terminated hyperbranched polyester as reactive modifier. Polymer 54:5473–5481CrossRef
20.
Zurück zum Zitat Guzmán D, Ramis X, Fernández-Francos X, Serra À (2014) New catalysts for diglycidyl ether of bisphenol a curing based on thiol-epoxy click reaction. Eur Polym J. 59:377–396CrossRef Guzmán D, Ramis X, Fernández-Francos X, Serra À (2014) New catalysts for diglycidyl ether of bisphenol a curing based on thiol-epoxy click reaction. Eur Polym J. 59:377–396CrossRef
21.
Zurück zum Zitat Brändle A, Khan A (2012) Thiol-epoxy “click” polymerization: efficient construction of reactive and functional polymers. Polym Chem. 3:3224–3227CrossRef Brändle A, Khan A (2012) Thiol-epoxy “click” polymerization: efficient construction of reactive and functional polymers. Polym Chem. 3:3224–3227CrossRef
22.
Zurück zum Zitat Berg GJ, McBride MK, Wang C, Bowman CN (2014) New directions in the chemistry of shape memory polymers. Polymer 55:1–24CrossRef Berg GJ, McBride MK, Wang C, Bowman CN (2014) New directions in the chemistry of shape memory polymers. Polymer 55:1–24CrossRef
23.
Zurück zum Zitat Xiao R, Guo J, Nguyen TD (2015) Modeling the multiple shape memory effect and temperature memory effect in amorphous polymers. RSC Adv 5:416–423CrossRef Xiao R, Guo J, Nguyen TD (2015) Modeling the multiple shape memory effect and temperature memory effect in amorphous polymers. RSC Adv 5:416–423CrossRef
24.
Zurück zum Zitat Barot G, Rao IJ (2006) Constitutive modeling of the mechanics associated with crystallizable shape memory polymers. Zeitschrift Fur Angew Math Und Phys. 57:652–681CrossRef Barot G, Rao IJ (2006) Constitutive modeling of the mechanics associated with crystallizable shape memory polymers. Zeitschrift Fur Angew Math Und Phys. 57:652–681CrossRef
25.
Zurück zum Zitat Diani J, Gilormini P, Frédy C, Rousseau IA (2012) Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. Int J Solids Struct 49:793–799CrossRef Diani J, Gilormini P, Frédy C, Rousseau IA (2012) Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. Int J Solids Struct 49:793–799CrossRef
26.
Zurück zum Zitat Graessley WW (1975) Statistical Mechanics of Random Coil Networks. Rubber Chem Technol 48:1008–1017CrossRef Graessley WW (1975) Statistical Mechanics of Random Coil Networks. Rubber Chem Technol 48:1008–1017CrossRef
27.
Zurück zum Zitat Miller DR, Macosko CW (1976) A new derivation of postgel properties of network polymers. Rubber Chem Technol 49:1219–1231CrossRef Miller DR, Macosko CW (1976) A new derivation of postgel properties of network polymers. Rubber Chem Technol 49:1219–1231CrossRef
28.
Zurück zum Zitat Charlesworth JM (1988) Effect of crosslink density on molecular relaxations in diepoxide-diamine network polymers. The rubbery plateau region 28:230–236 Charlesworth JM (1988) Effect of crosslink density on molecular relaxations in diepoxide-diamine network polymers. The rubbery plateau region 28:230–236
29.
Zurück zum Zitat Lesser A, Crawford E (1997) The role of network architecture on the glass transition temperature of epoxy resins. J Appl Polym Sci 66:387–395CrossRef Lesser A, Crawford E (1997) The role of network architecture on the glass transition temperature of epoxy resins. J Appl Polym Sci 66:387–395CrossRef
30.
Zurück zum Zitat Pascault JP, Sautereau H, Verdu J, Williams RJJ (2002) Thermosetting polymers, 1st edn. CRC Press, New YorkCrossRef Pascault JP, Sautereau H, Verdu J, Williams RJJ (2002) Thermosetting polymers, 1st edn. CRC Press, New YorkCrossRef
34.
Zurück zum Zitat Feldkamp DM, Rousseau IA (2010) Effect of the deformation temperature on the shape-memory behavior of epoxy networks. Macromol Mater Eng 295:726–734CrossRef Feldkamp DM, Rousseau IA (2010) Effect of the deformation temperature on the shape-memory behavior of epoxy networks. Macromol Mater Eng 295:726–734CrossRef
35.
Zurück zum Zitat Yakacki CM, Willis S, Luders C, Gall K (2008) Deformation limits in shape-memory polymers. Adv Eng Mater 10:112–119CrossRef Yakacki CM, Willis S, Luders C, Gall K (2008) Deformation limits in shape-memory polymers. Adv Eng Mater 10:112–119CrossRef
36.
Zurück zum Zitat Leonardi AB, Fasce LA, Zucchi IA, Hoppe CE, Soulé ER, Pérez CJ, Williams JJ (2011) Shape memory epoxies based on networks with chemical and physical crosslinks. Eur Polym J. 47(3):362–369CrossRef Leonardi AB, Fasce LA, Zucchi IA, Hoppe CE, Soulé ER, Pérez CJ, Williams JJ (2011) Shape memory epoxies based on networks with chemical and physical crosslinks. Eur Polym J. 47(3):362–369CrossRef
37.
Zurück zum Zitat Santiago D, Fernández-Francos X, Ferrando F, De la Flor S (2015) Shape-memory effect in hyperbranched poly (ethyleneimine)-modified epoxy thermosets. J Polym Sci 53(13):924–933CrossRef Santiago D, Fernández-Francos X, Ferrando F, De la Flor S (2015) Shape-memory effect in hyperbranched poly (ethyleneimine)-modified epoxy thermosets. J Polym Sci 53(13):924–933CrossRef
Metadaten
Titel
New understanding of the shape-memory response in thiol-epoxy click systems: towards controlling the recovery process
verfasst von
Alberto Belmonte
Xavier Fernández-Francos
Silvia De la Flor
Publikationsdatum
16.11.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 3/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0456-9

Weitere Artikel der Ausgabe 3/2017

Journal of Materials Science 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.