Skip to main content
Erschienen in: Journal of Materials Science 16/2019

14.05.2019 | Energy materials

NEXAFS spectroscopy study of lithium interaction with nitrogen incorporated in porous graphitic material

verfasst von: L. L. Lapteva, Yu. V. Fedoseeva, E. V. Shlyakhova, A. A. Makarova, L. G. Bulusheva, A. V. Okotrub

Erschienen in: Journal of Materials Science | Ausgabe 16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nitrogen-doped carbon nanomaterials have greater capacity and better cycling stability for Li-ion batteries as compared to undoped carbon materials. In situ near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in combination with quantum chemical modeling has been applied to determine the chemical states of the incorporated nitrogen after interaction with lithium. NEXAFS N K-edge spectra of nitrogen-doped porous carbon were measured before and after thermal deposition of Li vapors. The simulation and interpretation of NEXAFS data were carried out based on density functional theory calculations of initial and lithiated graphene fragments that contained different nitrogen species. The preferable interactions of Li with pyridinic and hydrogenated pyridinic nitrogen which are located at edges of atomic vacancies and graphene planes were revealed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lahiri I, Choi W (2013) Carbon nanostructures in lithium ion batteries: past, present, and future. Crit Rev Solid State Mater Sci 38:128–166CrossRef Lahiri I, Choi W (2013) Carbon nanostructures in lithium ion batteries: past, present, and future. Crit Rev Solid State Mater Sci 38:128–166CrossRef
2.
Zurück zum Zitat Rahman MA, Wong YC, Song G, Wen C (2015) A review on porous negative electrodes for high performance lithium-ion batteries. J Porous Mater 22:1313–1343CrossRef Rahman MA, Wong YC, Song G, Wen C (2015) A review on porous negative electrodes for high performance lithium-ion batteries. J Porous Mater 22:1313–1343CrossRef
4.
Zurück zum Zitat Zhao D, Wang L, Yu P, Zhao L, Tian C, Zhou W, Zhang L, Fu H (2015) From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res 8(9):2998–3010CrossRef Zhao D, Wang L, Yu P, Zhao L, Tian C, Zhou W, Zhang L, Fu H (2015) From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res 8(9):2998–3010CrossRef
5.
Zurück zum Zitat Zhou H, Zhu S, Hibino M, Honma I, Ichihara M (2003) Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv Mater 15:2107–2111CrossRef Zhou H, Zhu S, Hibino M, Honma I, Ichihara M (2003) Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv Mater 15:2107–2111CrossRef
6.
Zurück zum Zitat Bokhari SW, Siddique AH, Pan H, Li Y, Imtiaz M, Chen Z, Zhu SM, Zhang D (2017) Nitrogen doping in the carbon matrix for Li-ion hybrid supercapacitors: state of the art, challenges and future prospective. RSC Adv 7:18926–18936CrossRef Bokhari SW, Siddique AH, Pan H, Li Y, Imtiaz M, Chen Z, Zhu SM, Zhang D (2017) Nitrogen doping in the carbon matrix for Li-ion hybrid supercapacitors: state of the art, challenges and future prospective. RSC Adv 7:18926–18936CrossRef
7.
Zurück zum Zitat Wang Z-L, Xu D, Wang H-G, Wu Z, Zhang X-B (2013) In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7(3):2422–2430CrossRef Wang Z-L, Xu D, Wang H-G, Wu Z, Zhang X-B (2013) In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7(3):2422–2430CrossRef
8.
Zurück zum Zitat Li X, Geng D, Zhang Y, Meng X, Li R, Sun X (2011) Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun 13:822–825CrossRef Li X, Geng D, Zhang Y, Meng X, Li R, Sun X (2011) Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun 13:822–825CrossRef
9.
Zurück zum Zitat Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471CrossRef Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471CrossRef
10.
Zurück zum Zitat Bulusheva LG, Okotrub AV, Kurenya AG, Zhang H, Zhang H, Chen X, Song H (2011) Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 49:4013–4023CrossRef Bulusheva LG, Okotrub AV, Kurenya AG, Zhang H, Zhang H, Chen X, Song H (2011) Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 49:4013–4023CrossRef
11.
Zurück zum Zitat Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342CrossRef Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342CrossRef
12.
Zurück zum Zitat Wang X, Weng Q, Liu X, Wang X, Tang D-M, Tian W, Zhang C, Liu WYD, Bando Y, Golberg D (2014) Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett 14:1164–1171CrossRef Wang X, Weng Q, Liu X, Wang X, Tang D-M, Tian W, Zhang C, Liu WYD, Bando Y, Golberg D (2014) Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett 14:1164–1171CrossRef
13.
Zurück zum Zitat Tian L-L, Wei X-Y, Zhuang Q-C, Jiang C-H, Wu C, Ma G-Y, Zhao X, Zonga Z-M, Sunc S-G (2014) Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage. Nanoscale 6:6075–6083CrossRef Tian L-L, Wei X-Y, Zhuang Q-C, Jiang C-H, Wu C, Ma G-Y, Zhao X, Zonga Z-M, Sunc S-G (2014) Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage. Nanoscale 6:6075–6083CrossRef
14.
Zurück zum Zitat Yao F, Günes F, Ta HQ, Lee SM, Chae SJ, Sheem KY, Cojocaru CS, Xie SS, Lee YH (2012) Diffusion mechanism of lithium ion through basal plane of layered graphene. J Am Chem Soc 134:8646–8654CrossRef Yao F, Günes F, Ta HQ, Lee SM, Chae SJ, Sheem KY, Cojocaru CS, Xie SS, Lee YH (2012) Diffusion mechanism of lithium ion through basal plane of layered graphene. J Am Chem Soc 134:8646–8654CrossRef
15.
Zurück zum Zitat Ma C, Shao X, Cao D (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 22:8911–8915CrossRef Ma C, Shao X, Cao D (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 22:8911–8915CrossRef
16.
Zurück zum Zitat Yu YX (2013) Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries? Phys Chem Chem Phys 15:16819–16827CrossRef Yu YX (2013) Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries? Phys Chem Chem Phys 15:16819–16827CrossRef
17.
Zurück zum Zitat Bulusheva LG, Kanygin MA, Arkhipov VE, Popov KM, Fedoseeva YV, Smirnov DA, Okotrub AV (2017) In situ x-ray photoelectron spectroscopy study of lithium interaction with graphene and nitrogen-doped graphene films produced by chemical vapor deposition. J Phys Chem C 121:5108–5114CrossRef Bulusheva LG, Kanygin MA, Arkhipov VE, Popov KM, Fedoseeva YV, Smirnov DA, Okotrub AV (2017) In situ x-ray photoelectron spectroscopy study of lithium interaction with graphene and nitrogen-doped graphene films produced by chemical vapor deposition. J Phys Chem C 121:5108–5114CrossRef
18.
Zurück zum Zitat Inagaki M, Toyoda M, Soneda Y, Morishita T (2018) Nitrogen-doped carbon materials. Carbon 132:104–140CrossRef Inagaki M, Toyoda M, Soneda Y, Morishita T (2018) Nitrogen-doped carbon materials. Carbon 132:104–140CrossRef
19.
Zurück zum Zitat Zhong J, Deng J-J, Mao B-H, Xie T, Sun X-H, Mou Z-G, Hong C-H, Yang P, Wang S-D (2012) Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy. Carbon 50:321–341CrossRef Zhong J, Deng J-J, Mao B-H, Xie T, Sun X-H, Mou Z-G, Hong C-H, Yang P, Wang S-D (2012) Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy. Carbon 50:321–341CrossRef
20.
Zurück zum Zitat Bulushev DA, Zacharska M, Shlyakhova EV, Chuvilin AL, Guo Y, Beloshapkin S, Okotrub AV, Bulusheva LG (2016) Single isolated Pd2+ cations supported on N-doped carbon as active sites for hydrogen production from formic acid decomposition. ACS Catal 6(2):681–691CrossRef Bulushev DA, Zacharska M, Shlyakhova EV, Chuvilin AL, Guo Y, Beloshapkin S, Okotrub AV, Bulusheva LG (2016) Single isolated Pd2+ cations supported on N-doped carbon as active sites for hydrogen production from formic acid decomposition. ACS Catal 6(2):681–691CrossRef
21.
Zurück zum Zitat Bulusheva LG, Okotrub AV, Yashina LV, Velasco-Velez JJ, Usachov DY, Vyalikh DV (2018) X-ray photoelectron spectroscopy study of the interaction of lithium with graphene. Phys Sci Rev 121(9):5108–5114 Bulusheva LG, Okotrub AV, Yashina LV, Velasco-Velez JJ, Usachov DY, Vyalikh DV (2018) X-ray photoelectron spectroscopy study of the interaction of lithium with graphene. Phys Sci Rev 121(9):5108–5114
22.
Zurück zum Zitat Lapteva LL, Fedoseeva YV, Gevko PN, Smirnov DA, Gusel’nikov VA, Bulusheva LG, Okotrub AV (2017) X-ray spectroscopy study of lithiated graphite obtained by thermal deposition of lithium. J Struct Chem 58:1173–1179CrossRef Lapteva LL, Fedoseeva YV, Gevko PN, Smirnov DA, Gusel’nikov VA, Bulusheva LG, Okotrub AV (2017) X-ray spectroscopy study of lithiated graphite obtained by thermal deposition of lithium. J Struct Chem 58:1173–1179CrossRef
23.
Zurück zum Zitat Fedoseeva YV, Lapteva LL, Makarova AA, Bulusheva LG, Okotrub AV (2018) Charge polarization in partially lithiated single-walled carbon nanotubes. Phys Chem Chem Phys 20:22592–22599CrossRef Fedoseeva YV, Lapteva LL, Makarova AA, Bulusheva LG, Okotrub AV (2018) Charge polarization in partially lithiated single-walled carbon nanotubes. Phys Chem Chem Phys 20:22592–22599CrossRef
25.
Zurück zum Zitat Larciprete R, Goldoni A, Lizzit S, Petaccia L (2005) The electronic properties of carbon nanotubes studied by high resolution photoemission spectroscopy. Appl Phys Lett 248:8–13 Larciprete R, Goldoni A, Lizzit S, Petaccia L (2005) The electronic properties of carbon nanotubes studied by high resolution photoemission spectroscopy. Appl Phys Lett 248:8–13
26.
Zurück zum Zitat Shlyakhova EV, Bulusheva LG, Kanygin MA, Plyusnin PE, Kovalenko KA, Senkovskiy BV, Okotrub AV (2014) Synthesis of nitrogen-containing porous carbon using calcium oxide nanoparticles. Phys Status Solidi B 251:2607–2612CrossRef Shlyakhova EV, Bulusheva LG, Kanygin MA, Plyusnin PE, Kovalenko KA, Senkovskiy BV, Okotrub AV (2014) Synthesis of nitrogen-containing porous carbon using calcium oxide nanoparticles. Phys Status Solidi B 251:2607–2612CrossRef
27.
Zurück zum Zitat Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRef Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRef
28.
Zurück zum Zitat Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter Mater Phys 37:785–789CrossRef Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter Mater Phys 37:785–789CrossRef
29.
Zurück zum Zitat Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldon D, Halls MD, Zhang J, Friesner RA (2013) Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113(18):2110–2142CrossRef Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldon D, Halls MD, Zhang J, Friesner RA (2013) Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113(18):2110–2142CrossRef
30.
Zurück zum Zitat Wang Q, Li H, Chen L, Huang X (2002) Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ion 152:43–50CrossRef Wang Q, Li H, Chen L, Huang X (2002) Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ion 152:43–50CrossRef
31.
Zurück zum Zitat Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
32.
Zurück zum Zitat Billaud D, Henry F, Wellmann P (1994) Electrochemical intercalation of lithium into carbon materials. Mol Cryst Liq Cryst Sci Technol 245:159–164CrossRef Billaud D, Henry F, Wellmann P (1994) Electrochemical intercalation of lithium into carbon materials. Mol Cryst Liq Cryst Sci Technol 245:159–164CrossRef
33.
Zurück zum Zitat Bulusheva LG, Stolyarova SG, Chuvilin AL, Shubin YV, Asanov IP, Sorokin AM, Mel’gunov MS, Zhang S, Dong Y, Chen X, Song H, Okotrub AV (2018) Creation of nanosized holes in graphene planes for improvement of rate capability of lithium-ion batteries. Nanotechnology 29:134001. https://doi.org/10.1088/1361-6528/aaa99f CrossRef Bulusheva LG, Stolyarova SG, Chuvilin AL, Shubin YV, Asanov IP, Sorokin AM, Mel’gunov MS, Zhang S, Dong Y, Chen X, Song H, Okotrub AV (2018) Creation of nanosized holes in graphene planes for improvement of rate capability of lithium-ion batteries. Nanotechnology 29:134001. https://​doi.​org/​10.​1088/​1361-6528/​aaa99f CrossRef
35.
Zurück zum Zitat Tsumura T, Arikawa A, Kinumoto T, Arai Y, Morishita T, Orikasa H, Inagaki M, Toyoda M (2014) Structure of heat-treated mesoporous carbon and its electrochemical lithium intercalation behavior. Mater Chem Phys 147:1175–1182CrossRef Tsumura T, Arikawa A, Kinumoto T, Arai Y, Morishita T, Orikasa H, Inagaki M, Toyoda M (2014) Structure of heat-treated mesoporous carbon and its electrochemical lithium intercalation behavior. Mater Chem Phys 147:1175–1182CrossRef
36.
Zurück zum Zitat Jia N, Wang Z, Yang G, Shen H, Zhu L (2007) Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine. Electrochem Commun 9:233–238CrossRef Jia N, Wang Z, Yang G, Shen H, Zhu L (2007) Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine. Electrochem Commun 9:233–238CrossRef
37.
Zurück zum Zitat Xu Z, Chen J, Zhang X, Song Q, Wu J, Ding L, Zhang C, Zhu H, Cui H (2019) Template-free preparation of nitrogen-doped activated carbon with porous architecture for high-performance supercapacitors. Microporous Mesoporous Mater 276:280–291CrossRef Xu Z, Chen J, Zhang X, Song Q, Wu J, Ding L, Zhang C, Zhu H, Cui H (2019) Template-free preparation of nitrogen-doped activated carbon with porous architecture for high-performance supercapacitors. Microporous Mesoporous Mater 276:280–291CrossRef
38.
Zurück zum Zitat Chu PK, Li L (2006) Characterization of amorphous and nanocrystalline carbon films. Mater Chem Phys 96:253–277CrossRef Chu PK, Li L (2006) Characterization of amorphous and nanocrystalline carbon films. Mater Chem Phys 96:253–277CrossRef
39.
Zurück zum Zitat Nikitin A, Näslund L-Å, Zhang Z, Nilsson A (2008) C–H bond formation at the graphite surface studied with core level spectroscopy. Surf Sci 602:2575–2580CrossRef Nikitin A, Näslund L-Å, Zhang Z, Nilsson A (2008) C–H bond formation at the graphite surface studied with core level spectroscopy. Surf Sci 602:2575–2580CrossRef
40.
Zurück zum Zitat Díaz J, Paolicelli G, Ferrer S, Comin F (1996) Separation of the sp 3 and sp 2 components in the C 1s photoemission spectra of amorphous carbon films. Phys Rev B 54:8064–8069CrossRef Díaz J, Paolicelli G, Ferrer S, Comin F (1996) Separation of the sp 3 and sp 2 components in the C 1s photoemission spectra of amorphous carbon films. Phys Rev B 54:8064–8069CrossRef
41.
Zurück zum Zitat Fedoseeva YV, Pozdnyakov GA, Okotrub AV, Kanygin MA, Nastaushev YV, Vilkov OY, Bulusheva LG (2016) Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow. Appl Surf Sci 385:464–471CrossRef Fedoseeva YV, Pozdnyakov GA, Okotrub AV, Kanygin MA, Nastaushev YV, Vilkov OY, Bulusheva LG (2016) Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow. Appl Surf Sci 385:464–471CrossRef
42.
Zurück zum Zitat Yan J, Wang Q, Wei T, Jiang L, Zhang M, Jing X, Fan Z (2014) Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano 8:4720–4729CrossRef Yan J, Wang Q, Wei T, Jiang L, Zhang M, Jing X, Fan Z (2014) Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano 8:4720–4729CrossRef
43.
Zurück zum Zitat Dai GP, Zhang JM, Deng S (2011) Synthesis and characterization of nitrogen-doped monolayer and multilayer graphene on TEM copper grids. Chem Phys Lett 516:212–215CrossRef Dai GP, Zhang JM, Deng S (2011) Synthesis and characterization of nitrogen-doped monolayer and multilayer graphene on TEM copper grids. Chem Phys Lett 516:212–215CrossRef
44.
Zurück zum Zitat Brühwiler PA, Maxwell AJ, Puglia C, Nilsson A, Andersson S, Mårtensson N (1995) π∗ and σ∗ excitons in C 1s absorption of graphite. Phys Rev Lett 74:614–617CrossRef Brühwiler PA, Maxwell AJ, Puglia C, Nilsson A, Andersson S, Mårtensson N (1995) π∗ and σ∗ excitons in C 1s absorption of graphite. Phys Rev Lett 74:614–617CrossRef
45.
Zurück zum Zitat Ehlert C, Unger WES, Saalfrank P (2014) C K-edge NEXAFS spectra of graphene with physical and chemical defects: a study based on density functional theory. Phys Chem Chem Phys 16:14083–14095CrossRef Ehlert C, Unger WES, Saalfrank P (2014) C K-edge NEXAFS spectra of graphene with physical and chemical defects: a study based on density functional theory. Phys Chem Chem Phys 16:14083–14095CrossRef
46.
Zurück zum Zitat McCann R, Roy SS, Papakonstantinou P, Ahmad I, Maguire P, McLaughlin JA, Petaccia L, Lizzit S, Goldoni A (2005) NEXAFS study and electrical properties of nitrogen-incorporated tetrahedral amorphous carbon films. Diam Relat Mater 14:1057–1061CrossRef McCann R, Roy SS, Papakonstantinou P, Ahmad I, Maguire P, McLaughlin JA, Petaccia L, Lizzit S, Goldoni A (2005) NEXAFS study and electrical properties of nitrogen-incorporated tetrahedral amorphous carbon films. Diam Relat Mater 14:1057–1061CrossRef
47.
Zurück zum Zitat Okotrub AV, Yudanov NF, Tur VA, Asanov IP, Shubin YV, Vyalikh DV, Bulusheva LG (2012) Perforation of graphite in boiling mineral acid. Phys Status Solidi B 249:2620–2624CrossRef Okotrub AV, Yudanov NF, Tur VA, Asanov IP, Shubin YV, Vyalikh DV, Bulusheva LG (2012) Perforation of graphite in boiling mineral acid. Phys Status Solidi B 249:2620–2624CrossRef
48.
Zurück zum Zitat Minea TM, Bouchet-Fabre B, Lazar S, Point S, Zandbergen HW (2006) Angular and local spectroscopic analysis to probe the vertical alignment of N-doped well-separated carbon nanotubes. J Phys Chem B 110:15659–15662CrossRef Minea TM, Bouchet-Fabre B, Lazar S, Point S, Zandbergen HW (2006) Angular and local spectroscopic analysis to probe the vertical alignment of N-doped well-separated carbon nanotubes. J Phys Chem B 110:15659–15662CrossRef
49.
Zurück zum Zitat Arrigo R, Schuster ME, Xie Z, Yi Y, Wowsnick G, Sun LL, Hermann KE, Friedrich M, Kast P, Hävecker M, Knop-Gericke A, Schlögl R (2015) Nature of the N–Pd Interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal 5:2740–2753CrossRef Arrigo R, Schuster ME, Xie Z, Yi Y, Wowsnick G, Sun LL, Hermann KE, Friedrich M, Kast P, Hävecker M, Knop-Gericke A, Schlögl R (2015) Nature of the N–Pd Interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal 5:2740–2753CrossRef
50.
Zurück zum Zitat Bulusheva LG, Okotrub AV, Fedoseeva YV, Kurenya AG, Asanov IP, Vilkov OY, Koósd AA, Grobert N (2015) Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition. Phys Chem Chem Phys 17:23741–23747CrossRef Bulusheva LG, Okotrub AV, Fedoseeva YV, Kurenya AG, Asanov IP, Vilkov OY, Koósd AA, Grobert N (2015) Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition. Phys Chem Chem Phys 17:23741–23747CrossRef
51.
Zurück zum Zitat Inagaki M, Toyod M, Soneda Y, Morishita T (2018) Nitrogen-doped carbon materials. Carbon 132:104–140CrossRef Inagaki M, Toyod M, Soneda Y, Morishita T (2018) Nitrogen-doped carbon materials. Carbon 132:104–140CrossRef
52.
Zurück zum Zitat Matanovic I, Artyushkova K, Strand MB, Dzara MJ, Pylypenko S, Atanassov P (2016) Core level shifts of hydrogenated pyridinic and pyrrolic nitrogen in the nitrogen-containing graphene-based electrocatalysts: in-plane vs edge defects. J Phys Chem C120:29225–29232 Matanovic I, Artyushkova K, Strand MB, Dzara MJ, Pylypenko S, Atanassov P (2016) Core level shifts of hydrogenated pyridinic and pyrrolic nitrogen in the nitrogen-containing graphene-based electrocatalysts: in-plane vs edge defects. J Phys Chem C120:29225–29232
53.
Zurück zum Zitat Kepaptsoglou D, Hardcastle TP, Seabourne CR, Bangert U, Zan R, Amani JA, Hofsäss H, Nicholls RJ, Brydson RMD, Scott AJ, Ramasse QM (2015) Electronic structure modification of ion implanted graphene: the spectroscopic signatures of p- and n-type doping. ACS Nano 9:11398–11407CrossRef Kepaptsoglou D, Hardcastle TP, Seabourne CR, Bangert U, Zan R, Amani JA, Hofsäss H, Nicholls RJ, Brydson RMD, Scott AJ, Ramasse QM (2015) Electronic structure modification of ion implanted graphene: the spectroscopic signatures of p- and n-type doping. ACS Nano 9:11398–11407CrossRef
54.
Zurück zum Zitat Latham KG, Dose WM, Allen JA, Donne SW (2018) Nitrogen doped heat treated and activated hydrothermal carbon: NEXAFS examination of the carbon surface at different temperatures. Carbon 128:179–190CrossRef Latham KG, Dose WM, Allen JA, Donne SW (2018) Nitrogen doped heat treated and activated hydrothermal carbon: NEXAFS examination of the carbon surface at different temperatures. Carbon 128:179–190CrossRef
55.
Zurück zum Zitat Tenorio BNC, Oliveira RR, Nascimento MAC, Rocha AB (2018) Coupled cluster and time-dependent density functional theory description of inner shell photoabsorption cross sections of molecules. J Chem Theory Comput 14:5324–5338CrossRef Tenorio BNC, Oliveira RR, Nascimento MAC, Rocha AB (2018) Coupled cluster and time-dependent density functional theory description of inner shell photoabsorption cross sections of molecules. J Chem Theory Comput 14:5324–5338CrossRef
56.
Zurück zum Zitat Leinweber P, Kruse J, Walley FL, Gillespie A, Eckhardt K-U, Blyth R, Regier T (2007) Nitrogen K-edge XANES-an overview of reference compounds used to identify ‘unknown’ organic nitrogen in environmental samples. J Synchrotron Rad 14:500–511CrossRef Leinweber P, Kruse J, Walley FL, Gillespie A, Eckhardt K-U, Blyth R, Regier T (2007) Nitrogen K-edge XANES-an overview of reference compounds used to identify ‘unknown’ organic nitrogen in environmental samples. J Synchrotron Rad 14:500–511CrossRef
57.
Zurück zum Zitat Newbury DC, Ishii I, Hitchcock AP (1986) Inner shell electron-energy loss spectroscopy of some heterocyclic molecules. Can J Chem Eng 64:1145–1155CrossRef Newbury DC, Ishii I, Hitchcock AP (1986) Inner shell electron-energy loss spectroscopy of some heterocyclic molecules. Can J Chem Eng 64:1145–1155CrossRef
58.
Zurück zum Zitat Latham KG, Simone MI, Dose WM, Allen JA, Donne SW (2017) Synchrotron based NEXAFS study on nitrogen doped hydrothermal carbon: insights into surface functionalities and formation mechanisms. Carbon 114:566–578CrossRef Latham KG, Simone MI, Dose WM, Allen JA, Donne SW (2017) Synchrotron based NEXAFS study on nitrogen doped hydrothermal carbon: insights into surface functionalities and formation mechanisms. Carbon 114:566–578CrossRef
Metadaten
Titel
NEXAFS spectroscopy study of lithium interaction with nitrogen incorporated in porous graphitic material
verfasst von
L. L. Lapteva
Yu. V. Fedoseeva
E. V. Shlyakhova
A. A. Makarova
L. G. Bulusheva
A. V. Okotrub
Publikationsdatum
14.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03586-6

Weitere Artikel der Ausgabe 16/2019

Journal of Materials Science 16/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.