Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 15/2019

23.07.2019

Ni–SiO2 nanoporous composite as an efficient electrocatalyst for the electrooxidation of hydrogen peroxide

verfasst von: Junjun Zhang, Dongming Zhang, Youzhi Liu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 15/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nickel has attracted much attention as a cheap and readily available electrocatalyst towards the electrooxidation of hydrogen peroxide (H2O2). For the electrocatalytic reaction, the larger the surface area of the electrode, the more active sites can be provided, and the better the catalytic performance of the electrode can be achieved. In this paper, a three-dimensional (3D) porous electrode was successfully prepared by a simple two-step method. Firstly, the Ni–SiO2 composite was uniformly deposited on the carbon paper (CP) by electrodeposition, and then the SiO2 component in the Ni–SiO2 composite was removed by after dealloying (AD) to form a Ni–SiO2/CP (AD) electrode with a 3D porous structure, which has high catalytic activity area and good gas–liquid mass transfer property. The prepared Ni–SiO2/CP (AD) exhibits superior catalytic activity for H2O2 electrooxidation. At normal temperature, Ni–SiO2/CP (AD) in 1.0 mol dm−3 NaOH + 0.2 mol dm−3 H2O2 electrolyte solution, the oxidation current density reached 355 mA cm−2, which is 1.85 times the Ni/CP current density under the same conditions. This study provides a new idea for preparation of high catalytic activity of Ni catalyst for the electrooxidation of H2O2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. An, T. Zhao, X. Yan, X. Zhou, P. Tan, The dual role of hydrogen peroxide in fuel cells. Sci. Bull. 60, 55–64 (2015)CrossRef L. An, T. Zhao, X. Yan, X. Zhou, P. Tan, The dual role of hydrogen peroxide in fuel cells. Sci. Bull. 60, 55–64 (2015)CrossRef
2.
Zurück zum Zitat N.A. Choudhury, R.K. Raman, S. Sampath, A.K. Shukla, An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. J. Power Sources 143, 1–8 (2005)CrossRef N.A. Choudhury, R.K. Raman, S. Sampath, A.K. Shukla, An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. J. Power Sources 143, 1–8 (2005)CrossRef
3.
Zurück zum Zitat C.P. de León, F.C. Walsh, A. Rose, J.B. Lakeman, D.J. Browning, R.W. Reeve, A direct borohydride-acid peroxide fuel cell. J. Power Sources 164, 441–448 (2007)CrossRef C.P. de León, F.C. Walsh, A. Rose, J.B. Lakeman, D.J. Browning, R.W. Reeve, A direct borohydride-acid peroxide fuel cell. J. Power Sources 164, 441–448 (2007)CrossRef
4.
Zurück zum Zitat M.G. Medeiros, R.R. Bessette, C.M. Deschenes, C.J. Patrissi, L.G. Carreiro, S.P. Tucker, D.W. Atwater, Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles. J. Power Sources 136, 226–231 (2004)CrossRef M.G. Medeiros, R.R. Bessette, C.M. Deschenes, C.J. Patrissi, L.G. Carreiro, S.P. Tucker, D.W. Atwater, Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles. J. Power Sources 136, 226–231 (2004)CrossRef
5.
Zurück zum Zitat R.K. Raman, S.K. Prashant, A.K. Shukla, A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack. J. Power Sources 162, 1073–1076 (2006)CrossRef R.K. Raman, S.K. Prashant, A.K. Shukla, A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack. J. Power Sources 162, 1073–1076 (2006)CrossRef
6.
Zurück zum Zitat R.K. Raman, A.K. Shukla, Electro-reduction of hydrogen peroxide on iron tetramethoxy phenyl porphyrin and lead sulfate electrodes with application in direct borohydride fuel cells. J. Appl. Electrochem. 35, 1157–1161 (2005)CrossRef R.K. Raman, A.K. Shukla, Electro-reduction of hydrogen peroxide on iron tetramethoxy phenyl porphyrin and lead sulfate electrodes with application in direct borohydride fuel cells. J. Appl. Electrochem. 35, 1157–1161 (2005)CrossRef
7.
Zurück zum Zitat S.-I. Yamazaki, Z. Siroma, H. Senoh, T. Ioroi, N. Fujiwara, K. Yasuda, A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel. J. Power Sources 178, 20–25 (2008)CrossRef S.-I. Yamazaki, Z. Siroma, H. Senoh, T. Ioroi, N. Fujiwara, K. Yasuda, A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel. J. Power Sources 178, 20–25 (2008)CrossRef
8.
Zurück zum Zitat W. Yang, S. Yang, W. Sun, G. Sun, Q. Xin, Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells. Electrochim. Acta 52, 9–14 (2006)CrossRef W. Yang, S. Yang, W. Sun, G. Sun, Q. Xin, Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells. Electrochim. Acta 52, 9–14 (2006)CrossRef
9.
Zurück zum Zitat K. Ye, F. Guo, Y. Gao, D. Zhang, K. Cheng, W. Zhang, G. Wang, D. Cao, Three-dimensional carbon- and binder-free nickel nanowire arrays as a high-performance and low-cost anode for direct hydrogen peroxide fuel cell. J. Power Sources 300, 147–156 (2015)CrossRef K. Ye, F. Guo, Y. Gao, D. Zhang, K. Cheng, W. Zhang, G. Wang, D. Cao, Three-dimensional carbon- and binder-free nickel nanowire arrays as a high-performance and low-cost anode for direct hydrogen peroxide fuel cell. J. Power Sources 300, 147–156 (2015)CrossRef
10.
Zurück zum Zitat X. Wang, K. Ye, H. Zhang, X. Ma, K. Zhu, K. Cheng, G. Wang, D. Cao, Enhanced performance of direct peroxide-peroxide fuel cells by employing three-dimensional Ni and Co@TiC nanoarrays anodes. Int. J. Hydrog. Energy 42, 15044–15053 (2017)CrossRef X. Wang, K. Ye, H. Zhang, X. Ma, K. Zhu, K. Cheng, G. Wang, D. Cao, Enhanced performance of direct peroxide-peroxide fuel cells by employing three-dimensional Ni and Co@TiC nanoarrays anodes. Int. J. Hydrog. Energy 42, 15044–15053 (2017)CrossRef
11.
Zurück zum Zitat A.E. Sanli, A. Aytaç, Response to Disselkamp: direct peroxide/peroxide fuel cell as a novel type fuel cell. Int. J. Hydrog. Energy 36, 869–875 (2011)CrossRef A.E. Sanli, A. Aytaç, Response to Disselkamp: direct peroxide/peroxide fuel cell as a novel type fuel cell. Int. J. Hydrog. Energy 36, 869–875 (2011)CrossRef
12.
Zurück zum Zitat F. Yang, K. Cheng, Y. Mo, L. Yu, J. Yin, G. Wang, D. Cao, Direct peroxide-peroxide fuel cell-Part 1: the anode and cathode catalyst of carbon fiber cloth supported dendritic Pd. J. Power Sources 217, 562–568 (2012)CrossRef F. Yang, K. Cheng, Y. Mo, L. Yu, J. Yin, G. Wang, D. Cao, Direct peroxide-peroxide fuel cell-Part 1: the anode and cathode catalyst of carbon fiber cloth supported dendritic Pd. J. Power Sources 217, 562–568 (2012)CrossRef
13.
Zurück zum Zitat A.E. Sanli, A possible future fuel cell: the peroxide/peroxide fuel cell. Int. J. Energy Res. 37, 1488–1497 (2013)CrossRef A.E. Sanli, A possible future fuel cell: the peroxide/peroxide fuel cell. Int. J. Energy Res. 37, 1488–1497 (2013)CrossRef
14.
Zurück zum Zitat S.B. Hall, E.A. Khudaish, A.L. Hart, Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: effect of potential. Electrochim. Acta 43, 2015–2024 (1998)CrossRef S.B. Hall, E.A. Khudaish, A.L. Hart, Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: effect of potential. Electrochim. Acta 43, 2015–2024 (1998)CrossRef
15.
Zurück zum Zitat S.B. Hall, E.A. Khudaish, A.L. Hart, Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism. Electrochim. Acta 43, 579–588 (1998)CrossRef S.B. Hall, E.A. Khudaish, A.L. Hart, Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism. Electrochim. Acta 43, 579–588 (1998)CrossRef
16.
Zurück zum Zitat F. Yang, K. Cheng, T. Wu, Y. Zhang, J. Yin, G. Wang, D. Cao, Dendritic palladium decorated with gold by potential pulse electrodeposition: enhanced electrocatalytic activity for H2O2 electroreduction and electrooxidation. Electrochim. Acta 99, 54–61 (2013)CrossRef F. Yang, K. Cheng, T. Wu, Y. Zhang, J. Yin, G. Wang, D. Cao, Dendritic palladium decorated with gold by potential pulse electrodeposition: enhanced electrocatalytic activity for H2O2 electroreduction and electrooxidation. Electrochim. Acta 99, 54–61 (2013)CrossRef
17.
Zurück zum Zitat F. Yang, K. Cheng, T. Wu, Y. Zhang, J. Yin, G. Wang, D. Cao, Preparation of Au nanodendrites supported on carbon fiber cloth and its catalytic performance to H2O2 electroreduction and electrooxidation. RSC Adv. 3, 5483–5490 (2013)CrossRef F. Yang, K. Cheng, T. Wu, Y. Zhang, J. Yin, G. Wang, D. Cao, Preparation of Au nanodendrites supported on carbon fiber cloth and its catalytic performance to H2O2 electroreduction and electrooxidation. RSC Adv. 3, 5483–5490 (2013)CrossRef
18.
Zurück zum Zitat X. Xiao, F. Yang, K. Cheng, X. Wang, J. Yin, K. Ye, G. Wang, D. Cao, NiCo2O4 nanostructures with various morphologies as the high-performance electrocatalysts for H2O2 electroreduction and electrooxidation. J. Electroanal. Chem. 729, 103–108 (2014)CrossRef X. Xiao, F. Yang, K. Cheng, X. Wang, J. Yin, K. Ye, G. Wang, D. Cao, NiCo2O4 nanostructures with various morphologies as the high-performance electrocatalysts for H2O2 electroreduction and electrooxidation. J. Electroanal. Chem. 729, 103–108 (2014)CrossRef
19.
Zurück zum Zitat F. Yang, K. Cheng, X. Xiao, J. Yin, G. Wang, D. Cao, Nickel and cobalt electrodeposited on carbon fiber cloth as the anode of direct hydrogen peroxide fuel cell. J. Power Sources 245, 89–94 (2014)CrossRef F. Yang, K. Cheng, X. Xiao, J. Yin, G. Wang, D. Cao, Nickel and cobalt electrodeposited on carbon fiber cloth as the anode of direct hydrogen peroxide fuel cell. J. Power Sources 245, 89–94 (2014)CrossRef
20.
Zurück zum Zitat F. Yang, K. Cheng, X. Xue, J. Yin, G. Wang, D. Cao, Three-dimensional porous Ni film electrodeposited on Ni foam: high performance and low-cost catalytic electrode for H2O2 electrooxidation in KOH solution. Electrochim. Acta 107, 194–199 (2013)CrossRef F. Yang, K. Cheng, X. Xue, J. Yin, G. Wang, D. Cao, Three-dimensional porous Ni film electrodeposited on Ni foam: high performance and low-cost catalytic electrode for H2O2 electrooxidation in KOH solution. Electrochim. Acta 107, 194–199 (2013)CrossRef
21.
Zurück zum Zitat D. Zhang, K. Ye, K. Cheng, Y. Xu, J. Yin, D. Cao, G. Wang, Fabric-based flexible electrode with multi-walled carbon nanotubes@Ni network structure as a novel anode for hydrogen peroxide electrooxidation. RSC Adv. 4, 17454–17460 (2014)CrossRef D. Zhang, K. Ye, K. Cheng, Y. Xu, J. Yin, D. Cao, G. Wang, Fabric-based flexible electrode with multi-walled carbon nanotubes@Ni network structure as a novel anode for hydrogen peroxide electrooxidation. RSC Adv. 4, 17454–17460 (2014)CrossRef
22.
Zurück zum Zitat M. Roushani, B.Z. Dizajdizi, Development of nonenzymatic hydrogen peroxide sensor based on catalytic properties of copper nanoparticles/Rutin/MWCNTs/IL/Chit. Catal. Commun. 69, 133–137 (2015)CrossRef M. Roushani, B.Z. Dizajdizi, Development of nonenzymatic hydrogen peroxide sensor based on catalytic properties of copper nanoparticles/Rutin/MWCNTs/IL/Chit. Catal. Commun. 69, 133–137 (2015)CrossRef
23.
Zurück zum Zitat M. Roushani, B.Z. Dizajdizi, Development of nonenzymatic hydrogen peroxide sensor based on successive Pd-Ag electrodeposited nanoparticles on glassy carbon electrode. Electroanalysis 28, 787–793 (2016)CrossRef M. Roushani, B.Z. Dizajdizi, Development of nonenzymatic hydrogen peroxide sensor based on successive Pd-Ag electrodeposited nanoparticles on glassy carbon electrode. Electroanalysis 28, 787–793 (2016)CrossRef
24.
Zurück zum Zitat M. Roushani, E. Karami, A. Salimi, R. Sahraei, Amperometric detection of hydrogen peroxide at nano-ruthenium oxide/riboflavin nanocomposite-modified glassy carbon electrodes. Electrochim. Acta 113, 134–140 (2013)CrossRef M. Roushani, E. Karami, A. Salimi, R. Sahraei, Amperometric detection of hydrogen peroxide at nano-ruthenium oxide/riboflavin nanocomposite-modified glassy carbon electrodes. Electrochim. Acta 113, 134–140 (2013)CrossRef
25.
Zurück zum Zitat A. Salimi, R. Rahmatpanah, R. Hallaj, M. Roushani, Covalent attachment of thionine onto gold electrode modified with cadmium sulfide nanoparticles: improvement of electrocatalytic and photelectrocatalytic reduction of hydrogen peroxide. Electrochim. Acta 95, 60–70 (2013)CrossRef A. Salimi, R. Rahmatpanah, R. Hallaj, M. Roushani, Covalent attachment of thionine onto gold electrode modified with cadmium sulfide nanoparticles: improvement of electrocatalytic and photelectrocatalytic reduction of hydrogen peroxide. Electrochim. Acta 95, 60–70 (2013)CrossRef
26.
Zurück zum Zitat M. Roushani, Z. Abdi, A. Daneshfar, A. Salimi, Hydrogen peroxide sensor based on riboflavin immobilized at the nickel oxide nanoparticle-modified glassy carbon electrode. J. Appl. Electrochem. 43, 1175–1183 (2013)CrossRef M. Roushani, Z. Abdi, A. Daneshfar, A. Salimi, Hydrogen peroxide sensor based on riboflavin immobilized at the nickel oxide nanoparticle-modified glassy carbon electrode. J. Appl. Electrochem. 43, 1175–1183 (2013)CrossRef
27.
Zurück zum Zitat M. Roushani, B.Z. Dizajdizi, A. Salimi, A. Azadbakht, Preparation of modified glassy carbon electrode by the use of titanium oxide, copper and palladium nanoparticles and its application for the electrocatalytic and photelectrocatalytic reduction of hydrogen peroxide. J. Mater. Sci. 30, 5212–5221 (2019) M. Roushani, B.Z. Dizajdizi, A. Salimi, A. Azadbakht, Preparation of modified glassy carbon electrode by the use of titanium oxide, copper and palladium nanoparticles and its application for the electrocatalytic and photelectrocatalytic reduction of hydrogen peroxide. J. Mater. Sci. 30, 5212–5221 (2019)
28.
Zurück zum Zitat M. Roushani, K. Bakyas, B. Zare Dizajdizi, Development of sensitive amperometric hydrogen peroxide sensor using a CuNPs/MB/MWCNT-C60-Cs-IL nanocomposite modified glassy carbon electrode. Mater. Sci. Eng. C 64, 54–60 (2016)CrossRef M. Roushani, K. Bakyas, B. Zare Dizajdizi, Development of sensitive amperometric hydrogen peroxide sensor using a CuNPs/MB/MWCNT-C60-Cs-IL nanocomposite modified glassy carbon electrode. Mater. Sci. Eng. C 64, 54–60 (2016)CrossRef
29.
Zurück zum Zitat Z. Tang, C.K. Poh, Z. Tian, J. Lin, H.Y. Ng, D.H.C. Chua, In situ grown carbon nanotubes on carbon paper as integrated gas diffusion and catalyst layer for proton exchange membrane fuel cells. Electrochim. Acta 56, 4327–4334 (2011)CrossRef Z. Tang, C.K. Poh, Z. Tian, J. Lin, H.Y. Ng, D.H.C. Chua, In situ grown carbon nanotubes on carbon paper as integrated gas diffusion and catalyst layer for proton exchange membrane fuel cells. Electrochim. Acta 56, 4327–4334 (2011)CrossRef
30.
Zurück zum Zitat R.B. Moghaddam, P.G. Pickup, Formic acid oxidation at palladium nanoparticles supported on polyaniline modified carbon fibre paper. J. Solid State Electrochem. 19, 2843–2848 (2015)CrossRef R.B. Moghaddam, P.G. Pickup, Formic acid oxidation at palladium nanoparticles supported on polyaniline modified carbon fibre paper. J. Solid State Electrochem. 19, 2843–2848 (2015)CrossRef
31.
Zurück zum Zitat Y. Zhang, Q. Yi, T. Zou, X. Zhou, H. Nie, In situ deposition of Pd nanoparticles on carbon paper and their electroactivity for ethanol oxidation. Ionics 23, 3169–3176 (2017)CrossRef Y. Zhang, Q. Yi, T. Zou, X. Zhou, H. Nie, In situ deposition of Pd nanoparticles on carbon paper and their electroactivity for ethanol oxidation. Ionics 23, 3169–3176 (2017)CrossRef
32.
Zurück zum Zitat J. Chang, Y. Ouyang, J. Ge, J. Wang, C. Liu, W. Xing, Cobalt phosphosulfide in the tetragonal phase: a highly active and durable catalyst for the hydrogen evolution reaction. J. Mater. Chem. A 6, 12353–12360 (2018)CrossRef J. Chang, Y. Ouyang, J. Ge, J. Wang, C. Liu, W. Xing, Cobalt phosphosulfide in the tetragonal phase: a highly active and durable catalyst for the hydrogen evolution reaction. J. Mater. Chem. A 6, 12353–12360 (2018)CrossRef
33.
Zurück zum Zitat Y.-H. Li, Q.-Z. Xu, Q.-Y. Li, H. Wang, Y. Huang, C.-W. Xu, Pd deposited on MWCNTs modified carbon fiber paper as high-efficient electrocatalyst for ethanol electrooxidation. Electrochim. Acta 147, 151–156 (2014)CrossRef Y.-H. Li, Q.-Z. Xu, Q.-Y. Li, H. Wang, Y. Huang, C.-W. Xu, Pd deposited on MWCNTs modified carbon fiber paper as high-efficient electrocatalyst for ethanol electrooxidation. Electrochim. Acta 147, 151–156 (2014)CrossRef
34.
Zurück zum Zitat Y. Kim, H. Lee, T. Lim, H.-J. Kim, O.J. Kwon, Non-conventional Pt-Cu alloy/carbon paper electrochemical catalyst formed by electrodeposition using hydrogen bubble as template. J. Power Sources 364, 16–22 (2017)CrossRef Y. Kim, H. Lee, T. Lim, H.-J. Kim, O.J. Kwon, Non-conventional Pt-Cu alloy/carbon paper electrochemical catalyst formed by electrodeposition using hydrogen bubble as template. J. Power Sources 364, 16–22 (2017)CrossRef
35.
Zurück zum Zitat Y. Wang, M. Mohamedi, Hierarchically organized nanostructured TiO2/Pt on microfibrous carbon paper substrate for ethanol fuel cell reaction. Int. J. Hydrog. Energy 42, 22796–22804 (2017)CrossRef Y. Wang, M. Mohamedi, Hierarchically organized nanostructured TiO2/Pt on microfibrous carbon paper substrate for ethanol fuel cell reaction. Int. J. Hydrog. Energy 42, 22796–22804 (2017)CrossRef
36.
Zurück zum Zitat S.H. Ahn, I. Choi, O.J. Kwon, J.J. Kim, One-step co-electrodeposition of Pt–Ru electrocatalysts on carbon paper for direct methanol fuel cell. Chem. Eng. J. 181–182, 276–280 (2012)CrossRef S.H. Ahn, I. Choi, O.J. Kwon, J.J. Kim, One-step co-electrodeposition of Pt–Ru electrocatalysts on carbon paper for direct methanol fuel cell. Chem. Eng. J. 181–182, 276–280 (2012)CrossRef
37.
Zurück zum Zitat E. Negro, R. Latsuzbaia, M. Dieci, I. Boshuizen, G.J.M. Koper, Pt electrodeposited over carbon nano-networks grown on carbon paper as durable catalyst for PEM fuel cells. Appl. Catal. B 166–167, 155–165 (2015)CrossRef E. Negro, R. Latsuzbaia, M. Dieci, I. Boshuizen, G.J.M. Koper, Pt electrodeposited over carbon nano-networks grown on carbon paper as durable catalyst for PEM fuel cells. Appl. Catal. B 166–167, 155–165 (2015)CrossRef
38.
Zurück zum Zitat A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26, 4661–4672 (2016)CrossRef A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26, 4661–4672 (2016)CrossRef
39.
Zurück zum Zitat Y. Gong, Z. Xu, H. Pan, Y. Lin, Z. Yang, J. Wang, A 3D well-matched electrode pair of Ni-Co-S//Ni-Co-P nanoarrays grown on nickel foam as a high-performance electrocatalyst for water splitting. J. Mater. Chem. A 6, 12506–12514 (2018)CrossRef Y. Gong, Z. Xu, H. Pan, Y. Lin, Z. Yang, J. Wang, A 3D well-matched electrode pair of Ni-Co-S//Ni-Co-P nanoarrays grown on nickel foam as a high-performance electrocatalyst for water splitting. J. Mater. Chem. A 6, 12506–12514 (2018)CrossRef
40.
Zurück zum Zitat C. Köhler, A. Kloke, A. Drzyzga, R. Zengerle, S. Kerzenmacher, Fabrication of highly porous platinum electrodes for micro-scale applications by pulsed electrodeposition and dealloying. J. Power Sources 242, 255–263 (2013)CrossRef C. Köhler, A. Kloke, A. Drzyzga, R. Zengerle, S. Kerzenmacher, Fabrication of highly porous platinum electrodes for micro-scale applications by pulsed electrodeposition and dealloying. J. Power Sources 242, 255–263 (2013)CrossRef
41.
Zurück zum Zitat M. Graf, M. Haensch, J. Carstens, G. Wittstock, J. Weissmuller, Electrocatalytic methanol oxidation with nanoporous gold: microstructure and selectivity. Nanoscale 9, 17839–17848 (2017)CrossRef M. Graf, M. Haensch, J. Carstens, G. Wittstock, J. Weissmuller, Electrocatalytic methanol oxidation with nanoporous gold: microstructure and selectivity. Nanoscale 9, 17839–17848 (2017)CrossRef
42.
Zurück zum Zitat K. Jiang, B. Sun, M. Yao, N. Wang, W. Hu, S. Komarneni, In situ hydrothermal preparation of mesoporous Fe3O4 film for high-performance negative electrodes of supercapacitors. Microporous Mesoporous Mater. 265, 189–194 (2018)CrossRef K. Jiang, B. Sun, M. Yao, N. Wang, W. Hu, S. Komarneni, In situ hydrothermal preparation of mesoporous Fe3O4 film for high-performance negative electrodes of supercapacitors. Microporous Mesoporous Mater. 265, 189–194 (2018)CrossRef
43.
Zurück zum Zitat L.-K. Wu, W.-Y. Wu, J. Xia, H.-Z. Cao, G.-Y. Hou, Y.-P. Tang, G.-Q. Zheng, A nanostructured nickel-cobalt alloy with an oxide layer for an efficient oxygen evolution reaction. J. Mater. Chem. A 5, 10669–10677 (2017)CrossRef L.-K. Wu, W.-Y. Wu, J. Xia, H.-Z. Cao, G.-Y. Hou, Y.-P. Tang, G.-Q. Zheng, A nanostructured nickel-cobalt alloy with an oxide layer for an efficient oxygen evolution reaction. J. Mater. Chem. A 5, 10669–10677 (2017)CrossRef
44.
Zurück zum Zitat L.-K. Wu, J.-M. Hu, A silica co-electrodeposition route to nanoporous Co3O4 film electrode for oxygen evolution reaction. Electrochim. Acta 116, 158–163 (2014)CrossRef L.-K. Wu, J.-M. Hu, A silica co-electrodeposition route to nanoporous Co3O4 film electrode for oxygen evolution reaction. Electrochim. Acta 116, 158–163 (2014)CrossRef
45.
Zurück zum Zitat R. Wang, J.Q. Qi, Y.W. Sui, Y. Chang, Y.Z. He, F.X. Wei, Q.K. Meng, Z. Sun, Y.L. Zhao, Fabrication of nanosheets Co3O4 by oxidation-assisted dealloying method for high capacity supercapacitors. Mater. Lett. 184, 181–184 (2016)CrossRef R. Wang, J.Q. Qi, Y.W. Sui, Y. Chang, Y.Z. He, F.X. Wei, Q.K. Meng, Z. Sun, Y.L. Zhao, Fabrication of nanosheets Co3O4 by oxidation-assisted dealloying method for high capacity supercapacitors. Mater. Lett. 184, 181–184 (2016)CrossRef
46.
Zurück zum Zitat X. Zou, Y. He, P. Sun, J. Zhao, G. Cui, A novel dealloying strategy for fabricating nanoporous silver as an electrocatalyst for hydrogen peroxide detection. Appl. Surf. Sci. 447, 542–547 (2018)CrossRef X. Zou, Y. He, P. Sun, J. Zhao, G. Cui, A novel dealloying strategy for fabricating nanoporous silver as an electrocatalyst for hydrogen peroxide detection. Appl. Surf. Sci. 447, 542–547 (2018)CrossRef
47.
Zurück zum Zitat Y. Song, X. Zhang, S. Yang, X. Wei, Z. Sun, Electrocatalytic performance for methanol oxidation on nanoporous Pd/NiO composites prepared by one-step dealloying. Fuel 181, 269–276 (2016)CrossRef Y. Song, X. Zhang, S. Yang, X. Wei, Z. Sun, Electrocatalytic performance for methanol oxidation on nanoporous Pd/NiO composites prepared by one-step dealloying. Fuel 181, 269–276 (2016)CrossRef
48.
Zurück zum Zitat X. Gu, C. Wang, L. Yang, C. Yang, 3D porous PtAg nanotubes for ethanol electro-oxidation. J. Nanosci. Nanotechnol. 17, 2843–2847 (2017)CrossRef X. Gu, C. Wang, L. Yang, C. Yang, 3D porous PtAg nanotubes for ethanol electro-oxidation. J. Nanosci. Nanotechnol. 17, 2843–2847 (2017)CrossRef
49.
Zurück zum Zitat J. Cai, J. Xu, J. Wang, L. Zhang, H. Zhou, Y. Zhong, D. Chen, H. Fan, H. Shao, J. Zhang, C.-N. Cao, Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity and their excellent electrocatalytic activities for hydrogen evolution reaction. Int. J. Hydrog. Energy 38, 934–941 (2013)CrossRef J. Cai, J. Xu, J. Wang, L. Zhang, H. Zhou, Y. Zhong, D. Chen, H. Fan, H. Shao, J. Zhang, C.-N. Cao, Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity and their excellent electrocatalytic activities for hydrogen evolution reaction. Int. J. Hydrog. Energy 38, 934–941 (2013)CrossRef
50.
Zurück zum Zitat M.G. Hosseini, M. Abdolmaleki, S. Ashrafpoor, Preparation, characterization, and application of alkaline leached Ni/Zn-Ni binary coatings for electro-oxidation of methanol in alkaline solution. J. Appl. Electrochem. 42, 153–162 (2012)CrossRef M.G. Hosseini, M. Abdolmaleki, S. Ashrafpoor, Preparation, characterization, and application of alkaline leached Ni/Zn-Ni binary coatings for electro-oxidation of methanol in alkaline solution. J. Appl. Electrochem. 42, 153–162 (2012)CrossRef
51.
Zurück zum Zitat C. Qin, Y. Zhang, Z. Wang, H. Xiong, H. Yu, W. Zhao, One-step synthesis of CuO@brass foil by dealloying method for low-cost flexible supercapacitor electrodes. J. Mater. Sci. 27, 9206–9215 (2016) C. Qin, Y. Zhang, Z. Wang, H. Xiong, H. Yu, W. Zhao, One-step synthesis of CuO@brass foil by dealloying method for low-cost flexible supercapacitor electrodes. J. Mater. Sci. 27, 9206–9215 (2016)
52.
Zurück zum Zitat K. Fang, Y. Yang, L. Fu, H. Zheng, J. Yuan, L. Niu, Highly selective H2O2 sensor based on 1-D nanoporous Pt@C hybrids with core-shell structure. Sens. Actuator B 191, 401–407 (2014)CrossRef K. Fang, Y. Yang, L. Fu, H. Zheng, J. Yuan, L. Niu, Highly selective H2O2 sensor based on 1-D nanoporous Pt@C hybrids with core-shell structure. Sens. Actuator B 191, 401–407 (2014)CrossRef
53.
Zurück zum Zitat L. Sun, C.-L. Chien, P.C. Searson, Fabrication of nanoporous nickel by electrochemical dealloying. Chem. Mater. 16, 3125–3129 (2004)CrossRef L. Sun, C.-L. Chien, P.C. Searson, Fabrication of nanoporous nickel by electrochemical dealloying. Chem. Mater. 16, 3125–3129 (2004)CrossRef
54.
Zurück zum Zitat L. Semiz, N. Abdullayeva, M. Sankir, Nanoporous Pt and Ru catalysts by chemical dealloying of Pt-Al and Ru-Al alloys for ultrafast hydrogen generation. J. Alloy. Compd. 744, 110–115 (2018)CrossRef L. Semiz, N. Abdullayeva, M. Sankir, Nanoporous Pt and Ru catalysts by chemical dealloying of Pt-Al and Ru-Al alloys for ultrafast hydrogen generation. J. Alloy. Compd. 744, 110–115 (2018)CrossRef
55.
Zurück zum Zitat T. Song, M. Yan, M. Qian, The enabling role of dealloying in the creation of specific hierarchical porous metal structures—a review. Corros. Sci. 134, 78–98 (2018)CrossRef T. Song, M. Yan, M. Qian, The enabling role of dealloying in the creation of specific hierarchical porous metal structures—a review. Corros. Sci. 134, 78–98 (2018)CrossRef
56.
Zurück zum Zitat T. Wada, P.-A. Geslin, H. Kato, Preparation of hierarchical porous metals by two-step liquid metal dealloying. Scr. Mater. 142, 101–105 (2018)CrossRef T. Wada, P.-A. Geslin, H. Kato, Preparation of hierarchical porous metals by two-step liquid metal dealloying. Scr. Mater. 142, 101–105 (2018)CrossRef
57.
Zurück zum Zitat Z. Li, H. Bian, C.M. Lee, X. Chen, Y.Y. Li, Nickel nanotube array via electroplating and dealloying. Thin Solid Films 658, 1–6 (2018)CrossRef Z. Li, H. Bian, C.M. Lee, X. Chen, Y.Y. Li, Nickel nanotube array via electroplating and dealloying. Thin Solid Films 658, 1–6 (2018)CrossRef
58.
Zurück zum Zitat I. McCue, E. Benn, B. Gaskey, J. Erlebacher, Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263–286 (2016)CrossRef I. McCue, E. Benn, B. Gaskey, J. Erlebacher, Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263–286 (2016)CrossRef
59.
Zurück zum Zitat C. Xu, Y. Li, F. Tian, Y. Ding, Dealloying to nanoporous silver and its implementation as a template material for construction of nanotubular mesoporous bimetallic nanostructures. ChemPhysChem 11, 3320–3328 (2010)CrossRef C. Xu, Y. Li, F. Tian, Y. Ding, Dealloying to nanoporous silver and its implementation as a template material for construction of nanotubular mesoporous bimetallic nanostructures. ChemPhysChem 11, 3320–3328 (2010)CrossRef
60.
Zurück zum Zitat Z.Y. Hu, P.P. Wang, E.G. Fu, X.J. Wang, X.Q. Yan, P. Xu, Z.M. Wu, Y.B. Zhao, Y.X. Liang, Bilayer nanoporous copper films with various morphology features synthesized by one-step dealloying. J. Alloys. Compd. 754, 26–31 (2018)CrossRef Z.Y. Hu, P.P. Wang, E.G. Fu, X.J. Wang, X.Q. Yan, P. Xu, Z.M. Wu, Y.B. Zhao, Y.X. Liang, Bilayer nanoporous copper films with various morphology features synthesized by one-step dealloying. J. Alloys. Compd. 754, 26–31 (2018)CrossRef
61.
62.
Zurück zum Zitat C. Lin, Z. Gao, F. Zhang, J. Yang, B. Liu, J. Jin, In situ growth of single-layered α-Ni(OH)2 nanosheets on a carbon cloth for highly efficient electrocatalytic oxidation of urea. J. Mater. Chem. A 6, 13867–13873 (2018)CrossRef C. Lin, Z. Gao, F. Zhang, J. Yang, B. Liu, J. Jin, In situ growth of single-layered α-Ni(OH)2 nanosheets on a carbon cloth for highly efficient electrocatalytic oxidation of urea. J. Mater. Chem. A 6, 13867–13873 (2018)CrossRef
63.
Zurück zum Zitat A.K. Singh, D. Sarkar, G.G. Khan, K. Mandal, Unique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitors. J. Mater. Chem. A 1, 12759–12767 (2013)CrossRef A.K. Singh, D. Sarkar, G.G. Khan, K. Mandal, Unique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitors. J. Mater. Chem. A 1, 12759–12767 (2013)CrossRef
64.
Zurück zum Zitat L.-K. Wu, J.-M. Hu, J.-Q. Zhang, C.-N. Cao, A silica co-electrodeposition route to highly active Ni-based film electrodes. J. Mater. Chem. A 1, 12885–12892 (2013)CrossRef L.-K. Wu, J.-M. Hu, J.-Q. Zhang, C.-N. Cao, A silica co-electrodeposition route to highly active Ni-based film electrodes. J. Mater. Chem. A 1, 12885–12892 (2013)CrossRef
65.
Zurück zum Zitat X. Zhou, H. Zhao, Z. Fu, J. Qu, M. Zhong, X. Yang, Y. Yi, C. Wang, Nanoporous Ni with high surface area for potential hydrogen storage application. Nanomaterials 8, 394 (2018)CrossRef X. Zhou, H. Zhao, Z. Fu, J. Qu, M. Zhong, X. Yang, Y. Yi, C. Wang, Nanoporous Ni with high surface area for potential hydrogen storage application. Nanomaterials 8, 394 (2018)CrossRef
66.
Zurück zum Zitat S. Kim, K. Kim, H.-J. Kim, H.-N. Lee, T.J. Park, Y.M. Park, Non-enzymatic electrochemical lactate sensing by NiO and Ni(OH)2 electrodes: a mechanistic investigation. Electrochim. Acta 276, 240–246 (2018)CrossRef S. Kim, K. Kim, H.-J. Kim, H.-N. Lee, T.J. Park, Y.M. Park, Non-enzymatic electrochemical lactate sensing by NiO and Ni(OH)2 electrodes: a mechanistic investigation. Electrochim. Acta 276, 240–246 (2018)CrossRef
67.
Zurück zum Zitat Z. Zhang, Y. Jiang, X. Zheng, X. Sun, Y. Guo, Electrodepositing ultra-thin Ni(OH)2 amorphous film on Ni2P nanosheets array: an efficient strategy toward greatly enhanced alkaline hydrogen evolution reaction. New J. Chem. 42, 11285–11288 (2018)CrossRef Z. Zhang, Y. Jiang, X. Zheng, X. Sun, Y. Guo, Electrodepositing ultra-thin Ni(OH)2 amorphous film on Ni2P nanosheets array: an efficient strategy toward greatly enhanced alkaline hydrogen evolution reaction. New J. Chem. 42, 11285–11288 (2018)CrossRef
68.
Zurück zum Zitat Y. Zhou, C. Sun, X. Yang, G. Zou, H. Wu, S. Xi, Flame-like Ni(OH)2 strongly promotes the dissociation of water and can be used to produce an excellent hybrid electrocatalyst for the hydrogen evolution reaction in alkaline media. Electrochem. Commun. 91, 66–70 (2018)CrossRef Y. Zhou, C. Sun, X. Yang, G. Zou, H. Wu, S. Xi, Flame-like Ni(OH)2 strongly promotes the dissociation of water and can be used to produce an excellent hybrid electrocatalyst for the hydrogen evolution reaction in alkaline media. Electrochem. Commun. 91, 66–70 (2018)CrossRef
69.
Zurück zum Zitat G. Pan, D.W. Schaefer, Morphology and water-barrier properties of silane films on aluminum and silicon. Thin Solid Films 503, 259–267 (2006)CrossRef G. Pan, D.W. Schaefer, Morphology and water-barrier properties of silane films on aluminum and silicon. Thin Solid Films 503, 259–267 (2006)CrossRef
70.
Zurück zum Zitat A. Aytaç, M. Gürbüz, A.E. Sanli, Electrooxidation of hydrogen peroxide and sodium borohydride on Ni deposited carbon fiber electrode for alkaline fuel cells. Int. J. Hydrog. Energy 36, 10013–10021 (2011)CrossRef A. Aytaç, M. Gürbüz, A.E. Sanli, Electrooxidation of hydrogen peroxide and sodium borohydride on Ni deposited carbon fiber electrode for alkaline fuel cells. Int. J. Hydrog. Energy 36, 10013–10021 (2011)CrossRef
71.
Zurück zum Zitat K. Ye, D. Zhang, H. Zhang, K. Cheng, G. Wang, D. Cao, Platinum-modified cobalt nanosheets supported on three-dimensional carbon sponge as a high-performance catalyst for hydrogen peroxide electroreduction. Electrochim. Acta 178, 270–279 (2015)CrossRef K. Ye, D. Zhang, H. Zhang, K. Cheng, G. Wang, D. Cao, Platinum-modified cobalt nanosheets supported on three-dimensional carbon sponge as a high-performance catalyst for hydrogen peroxide electroreduction. Electrochim. Acta 178, 270–279 (2015)CrossRef
Metadaten
Titel
Ni–SiO2 nanoporous composite as an efficient electrocatalyst for the electrooxidation of hydrogen peroxide
verfasst von
Junjun Zhang
Dongming Zhang
Youzhi Liu
Publikationsdatum
23.07.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 15/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01707-0

Weitere Artikel der Ausgabe 15/2019

Journal of Materials Science: Materials in Electronics 15/2019 Zur Ausgabe

Neuer Inhalt