Skip to main content

2015 | OriginalPaper | Buchkapitel

11. Niobium Biomaterials

verfasst von : Barry O’Brien

Erschienen in: Advances in Metallic Biomaterials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Niobium is a particularly attractive metal for application as a biomaterial, due to the highly inert and unreactive nature of its surface. However, mechanical property limitations have restricted the use of the material in this field. This chapter initially reviews some of the fundamental aspects of niobium biocompatibility with a particular emphasis on surface technologies such as vapour deposition, sol-gel, anodizing and boronizing. Recent and ongoing activities aimed at improving bulk mechanical performance are also reviewed. These include approaches such as severe plastic deformation to refine grain structures and the development of new alloys. Where appropriate, data that demonstrates biocompatibility of these new niobium surfaces is also presented. Thus while niobium alloys have seen limited application to date, this chapter presents an overview showing the great potential for this material and the ongoing efforts in this regard.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Davies JR (1994) Stainless steel: ASM specialty handbook. ASM International, Ohio Davies JR (1994) Stainless steel: ASM specialty handbook. ASM International, Ohio
2.
Zurück zum Zitat Poncin P, Proft J (2003) Stent tubing – understanding the desired attributes. In: Shrivastave S (ed) Proceedings of the materials & processes for medical devices conference, Anaheim, CA, USA, 8–10 September 2003. ASM International, Ohio, pp 253–259 Poncin P, Proft J (2003) Stent tubing – understanding the desired attributes. In: Shrivastave S (ed) Proceedings of the materials & processes for medical devices conference, Anaheim, CA, USA, 8–10 September 2003. ASM International, Ohio, pp 253–259
3.
Zurück zum Zitat Davies JR (ed) (1990) Properties and selection: nonferrous alloys and special-purpose materials, vol 2, ASM handbook. ASM International, Ohio Davies JR (ed) (1990) Properties and selection: nonferrous alloys and special-purpose materials, vol 2, ASM handbook. ASM International, Ohio
4.
Zurück zum Zitat El-Genk MS, Tournier JM (2005) A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems. J Nucl Mater 340:93–112CrossRef El-Genk MS, Tournier JM (2005) A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems. J Nucl Mater 340:93–112CrossRef
5.
Zurück zum Zitat Zitter H, Plenk H (1987) The electrochemical behaviour of metallic implant materials as an indicator of their biocompatibility. J Biomed Mater Res 21:881–896CrossRef Zitter H, Plenk H (1987) The electrochemical behaviour of metallic implant materials as an indicator of their biocompatibility. J Biomed Mater Res 21:881–896CrossRef
6.
Zurück zum Zitat Johansson CB, Albrektsson T (1991) A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clin Oral Implants Res 2:24–29CrossRef Johansson CB, Albrektsson T (1991) A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clin Oral Implants Res 2:24–29CrossRef
7.
Zurück zum Zitat Matsuno H et al (2001) Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 22:1253–1262CrossRef Matsuno H et al (2001) Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 22:1253–1262CrossRef
8.
Zurück zum Zitat Metikoš-Huković M et al (2003) The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials 24:3765–3775CrossRef Metikoš-Huković M et al (2003) The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials 24:3765–3775CrossRef
9.
Zurück zum Zitat Rogers SD et al (1997) In vitro human monocyte response to wear particles of titanium alloy containing vanadium or niobium. J Bone Joint Surg [Br] 79B:311–315CrossRef Rogers SD et al (1997) In vitro human monocyte response to wear particles of titanium alloy containing vanadium or niobium. J Bone Joint Surg [Br] 79B:311–315CrossRef
10.
Zurück zum Zitat Eisenbarth E et al (2004) Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 25:5705–5713CrossRef Eisenbarth E et al (2004) Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 25:5705–5713CrossRef
11.
Zurück zum Zitat Eisenbarth E et al (2006) Nanostructured niobium oxide coatings influence osteoblast adhesion. J Biomed Mater Res 79A:166–175CrossRef Eisenbarth E et al (2006) Nanostructured niobium oxide coatings influence osteoblast adhesion. J Biomed Mater Res 79A:166–175CrossRef
12.
Zurück zum Zitat Ochsenbein A et al (2008) Osteoblast responses to different oxide coatings produced by the sol-gel process on titanium substrates. Acta Biomater 4:1506–1517CrossRef Ochsenbein A et al (2008) Osteoblast responses to different oxide coatings produced by the sol-gel process on titanium substrates. Acta Biomater 4:1506–1517CrossRef
13.
Zurück zum Zitat Nagarajan S et al (2010) Synthesis and electrochemical characterization of porous niobium oxide coated 316LSS for orthopedic applications. Mater Chem Phys 119:363–366CrossRef Nagarajan S et al (2010) Synthesis and electrochemical characterization of porous niobium oxide coated 316LSS for orthopedic applications. Mater Chem Phys 119:363–366CrossRef
14.
Zurück zum Zitat Ramirez G et al (2010) Amorphous niobium oxide thin films. J Non Cryst Solids 365:2714–2721CrossRef Ramirez G et al (2010) Amorphous niobium oxide thin films. J Non Cryst Solids 365:2714–2721CrossRef
15.
Zurück zum Zitat Lai F et al (2006) Effect of thickness on the structure, morphology and optical properties of sputter deposited Nb2O5 films. Appl Surf Sci 253:1801–1805CrossRef Lai F et al (2006) Effect of thickness on the structure, morphology and optical properties of sputter deposited Nb2O5 films. Appl Surf Sci 253:1801–1805CrossRef
16.
Zurück zum Zitat Ramirez G et al (2011) Niobium based coatings for dental implants. Appl Surf Sci 257:2555–2559CrossRef Ramirez G et al (2011) Niobium based coatings for dental implants. Appl Surf Sci 257:2555–2559CrossRef
17.
Zurück zum Zitat Olaya JJ et al (2008) Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering. Thin Solid Films 516:8319–8326CrossRef Olaya JJ et al (2008) Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering. Thin Solid Films 516:8319–8326CrossRef
18.
Zurück zum Zitat Rojas PN, Rodil SE (2012) Corrosion behaviour of amorphous niobium oxide coatings. Int J Electrochem Sci 7:1443–1458 Rojas PN, Rodil SE (2012) Corrosion behaviour of amorphous niobium oxide coatings. Int J Electrochem Sci 7:1443–1458
19.
Zurück zum Zitat Park WW et al (2012) Wear of UHMWPE against nitrogen-ion-implanted and NbN-coated Co-Cr-Mo alloy formed by plasma immersion ion implantation and deposition for artificial joints. Appl Surf Sci 258:8228–8233CrossRef Park WW et al (2012) Wear of UHMWPE against nitrogen-ion-implanted and NbN-coated Co-Cr-Mo alloy formed by plasma immersion ion implantation and deposition for artificial joints. Appl Surf Sci 258:8228–8233CrossRef
20.
Zurück zum Zitat Braic M et al (2011) Preparation and characterization of biocompatible Nb-C coatings. Thin Solid Films 519:4064–4068CrossRef Braic M et al (2011) Preparation and characterization of biocompatible Nb-C coatings. Thin Solid Films 519:4064–4068CrossRef
21.
Zurück zum Zitat Olivares-Navarrete R et al (2011) Biocompatibility of niobium coatings. Coatings 1:72–87CrossRef Olivares-Navarrete R et al (2011) Biocompatibility of niobium coatings. Coatings 1:72–87CrossRef
22.
Zurück zum Zitat Zhao T et al (2011) Surface characteristics, nano-indentation and corrosion behavior of Nb implanted NiTi alloy. Surf Coat Technol 205:4404–4410CrossRef Zhao T et al (2011) Surface characteristics, nano-indentation and corrosion behavior of Nb implanted NiTi alloy. Surf Coat Technol 205:4404–4410CrossRef
23.
Zurück zum Zitat Godley R et al (2004) Bonelike apatite formation on niobium metal treated in aqueous NaOH. J Mater Sci Mater Med 15:1073–1077CrossRef Godley R et al (2004) Bonelike apatite formation on niobium metal treated in aqueous NaOH. J Mater Sci Mater Med 15:1073–1077CrossRef
24.
Zurück zum Zitat Wang XJ et al (2008) In vitro bioactivity evaluation of titanium and niobium metals with different surface morphologies. Acta Biomater 4:1530–1535CrossRef Wang XJ et al (2008) In vitro bioactivity evaluation of titanium and niobium metals with different surface morphologies. Acta Biomater 4:1530–1535CrossRef
25.
Zurück zum Zitat Akahori T et al (2007) Bioactive ceramic surface modification of β-type Ti-Nb-Ta-Zr system alloy by alkali solution treatment. Mater Trans 48(3):293–300CrossRef Akahori T et al (2007) Bioactive ceramic surface modification of β-type Ti-Nb-Ta-Zr system alloy by alkali solution treatment. Mater Trans 48(3):293–300CrossRef
26.
Zurück zum Zitat Minagar S et al (2012) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8:2875–2888CrossRef Minagar S et al (2012) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8:2875–2888CrossRef
27.
Zurück zum Zitat Sieber I et al (2005) Formation of self-organized niobium porous oxide on niobium. Electrochem Commun 7:97–100CrossRef Sieber I et al (2005) Formation of self-organized niobium porous oxide on niobium. Electrochem Commun 7:97–100CrossRef
28.
Zurück zum Zitat Karlinsey R (2005) Preparation of self-organized niobium oxide microstructures via potentiostatic anodization. Electrochem Commun 7:1190–1194CrossRef Karlinsey R (2005) Preparation of self-organized niobium oxide microstructures via potentiostatic anodization. Electrochem Commun 7:1190–1194CrossRef
29.
Zurück zum Zitat Störmer H et al (2009) Anodically formed oxide films on niobium: microstructural and electrical properties. J Eur Ceram Soc 29:1743–1753CrossRef Störmer H et al (2009) Anodically formed oxide films on niobium: microstructural and electrical properties. J Eur Ceram Soc 29:1743–1753CrossRef
30.
Zurück zum Zitat Mackey AC et al (2012) Development of niobium oxide coatings on sand-blasted titanium alloy dental implants. Mater Sci Appl 3:301–305 Mackey AC et al (2012) Development of niobium oxide coatings on sand-blasted titanium alloy dental implants. Mater Sci Appl 3:301–305
31.
Zurück zum Zitat Usta M (2005) The characterization of borided pure niobium. Surf Coat Technol 194:251–255CrossRef Usta M (2005) The characterization of borided pure niobium. Surf Coat Technol 194:251–255CrossRef
32.
Zurück zum Zitat Ribeiro R et al (2006) Tribological characteristics of boronized niobium for biojoint applications. Vacuum 80:1341–1345CrossRef Ribeiro R et al (2006) Tribological characteristics of boronized niobium for biojoint applications. Vacuum 80:1341–1345CrossRef
33.
Zurück zum Zitat Dokumaci E et al (2013) Effect of boronizing on the oxidation of niobium. Int J Refract Met Hard Mater 41:276–281CrossRef Dokumaci E et al (2013) Effect of boronizing on the oxidation of niobium. Int J Refract Met Hard Mater 41:276–281CrossRef
34.
Zurück zum Zitat Papakyriacou M et al (2000) Effects of surface treatments on high cycle corrosion fatigue of metallic implant materials. Int J Fatigue 22:873–886CrossRef Papakyriacou M et al (2000) Effects of surface treatments on high cycle corrosion fatigue of metallic implant materials. Int J Fatigue 22:873–886CrossRef
35.
Zurück zum Zitat Papakyriacou M et al (2002) Cyclic plastic deformation of tantalum and niobium at very high numbers of cycles. Mater Sci Eng A325:520–524CrossRef Papakyriacou M et al (2002) Cyclic plastic deformation of tantalum and niobium at very high numbers of cycles. Mater Sci Eng A325:520–524CrossRef
36.
Zurück zum Zitat Langdon TG (2007) The principles of grain refinement in equal-channel angular pressing. Mater Sci Eng A462:3–11CrossRef Langdon TG (2007) The principles of grain refinement in equal-channel angular pressing. Mater Sci Eng A462:3–11CrossRef
37.
Zurück zum Zitat Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981CrossRef Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981CrossRef
38.
Zurück zum Zitat Niendorf T et al (2007) Microstructure-mechanical property relationships in ultrafine-grained NbZr. Acta Mater 55:6596–6605CrossRef Niendorf T et al (2007) Microstructure-mechanical property relationships in ultrafine-grained NbZr. Acta Mater 55:6596–6605CrossRef
39.
Zurück zum Zitat Niendorf T et al (2008) Improvement of the fatigue performance of an ultrafine-grained Nb-Zr alloy by nano-sized precipitates formed by internal oxidation. Scr Mater 58:571–574CrossRef Niendorf T et al (2008) Improvement of the fatigue performance of an ultrafine-grained Nb-Zr alloy by nano-sized precipitates formed by internal oxidation. Scr Mater 58:571–574CrossRef
40.
Zurück zum Zitat Purcek G (2011) Effect of internal oxidation on wear behavior of ultrafine-grained Nb-Zr. Acta Mater 59:7683–7694CrossRef Purcek G (2011) Effect of internal oxidation on wear behavior of ultrafine-grained Nb-Zr. Acta Mater 59:7683–7694CrossRef
41.
Zurück zum Zitat Rubitschek F et al (2012) Microstructural stability of ultrafine-grained niobium-zirconium alloy at elevated temperatures. J Alloys Compd 517:61–68CrossRef Rubitschek F et al (2012) Microstructural stability of ultrafine-grained niobium-zirconium alloy at elevated temperatures. J Alloys Compd 517:61–68CrossRef
42.
Zurück zum Zitat Toker SM et al (2012) Anisotropy of ultrafine-grained alloys under impact loading: the case of biomedical niobium-zirconium. Scr Mater 66:435–438CrossRef Toker SM et al (2012) Anisotropy of ultrafine-grained alloys under impact loading: the case of biomedical niobium-zirconium. Scr Mater 66:435–438CrossRef
43.
Zurück zum Zitat Rubitschek F et al (2012) Corrosion fatigue behavior of a biocompatible ultrafine-grained niobium alloy in simulated body fluid. J Mech Behav Biomed Mater 5:181–192CrossRef Rubitschek F et al (2012) Corrosion fatigue behavior of a biocompatible ultrafine-grained niobium alloy in simulated body fluid. J Mech Behav Biomed Mater 5:181–192CrossRef
44.
Zurück zum Zitat Niinomi M (1998) Mechanical properties of biomedical titanium alloys. Mater Sci Eng A243:231–236CrossRef Niinomi M (1998) Mechanical properties of biomedical titanium alloys. Mater Sci Eng A243:231–236CrossRef
45.
Zurück zum Zitat Rubitschek F et al (2013) Surface hardening of biocompatible ultrafine-grained niobium zirconium alloy by two-stage oxidation treatment. J Mater Sci 48:4549–4556CrossRef Rubitschek F et al (2013) Surface hardening of biocompatible ultrafine-grained niobium zirconium alloy by two-stage oxidation treatment. J Mater Sci 48:4549–4556CrossRef
46.
Zurück zum Zitat DiStefano JR, Chitwood LD (2001) Oxidation and its effects on the mechanical properties of Nb-1Zr. J Nucl Mater 295:42–48CrossRef DiStefano JR, Chitwood LD (2001) Oxidation and its effects on the mechanical properties of Nb-1Zr. J Nucl Mater 295:42–48CrossRef
47.
Zurück zum Zitat Slining JR, Koss DA (1973) Solid solution strengthening of high purity niobium alloys. Metall Trans 4:1261–1264CrossRef Slining JR, Koss DA (1973) Solid solution strengthening of high purity niobium alloys. Metall Trans 4:1261–1264CrossRef
48.
Zurück zum Zitat Craig Wojcik C (1998) High-temperature niobium alloys. Adv Mater Process 12:27–30 Craig Wojcik C (1998) High-temperature niobium alloys. Adv Mater Process 12:27–30
49.
Zurück zum Zitat Leonard KJ et al (2009) Nb-base FS-85 alloy as a candidate structural material for space reactor applications: effects of thermal aging. Metall Mater Trans 40A:838–855CrossRef Leonard KJ et al (2009) Nb-base FS-85 alloy as a candidate structural material for space reactor applications: effects of thermal aging. Metall Mater Trans 40A:838–855CrossRef
50.
Zurück zum Zitat Dickerson SL, Gibeling JC (2000) Low cycle fatigue of niobium-zirconium and niobium-zirconium-carbon alloys. Mater Sci Eng A278:121–134CrossRef Dickerson SL, Gibeling JC (2000) Low cycle fatigue of niobium-zirconium and niobium-zirconium-carbon alloys. Mater Sci Eng A278:121–134CrossRef
51.
Zurück zum Zitat Tan Y et al (2003) Effect of alloy composition on microstructure and high temperature properties of Nb-Zr-C ternary alloys. Mater Sci Eng A341:282–288CrossRef Tan Y et al (2003) Effect of alloy composition on microstructure and high temperature properties of Nb-Zr-C ternary alloys. Mater Sci Eng A341:282–288CrossRef
52.
Zurück zum Zitat Ding R, Jones IP (2008) Mechanical properties and deformation behaviour of a niobium alloy with different carbon contents. Mater Sci Eng A497:301–308CrossRef Ding R, Jones IP (2008) Mechanical properties and deformation behaviour of a niobium alloy with different carbon contents. Mater Sci Eng A497:301–308CrossRef
53.
Zurück zum Zitat Beier F et al (2006) First in-human randomized comparison of an anodized niobium stent versus a standard stainless steel stent. Clin Res Cardiol 95:455–460CrossRef Beier F et al (2006) First in-human randomized comparison of an anodized niobium stent versus a standard stainless steel stent. Clin Res Cardiol 95:455–460CrossRef
54.
Zurück zum Zitat Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1:30–42CrossRef Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1:30–42CrossRef
55.
Zurück zum Zitat Hug J et al (2000) Coronary arterial stents: safety and artifacts during MR imaging. Radiology 216:781–787CrossRef Hug J et al (2000) Coronary arterial stents: safety and artifacts during MR imaging. Radiology 216:781–787CrossRef
56.
Zurück zum Zitat Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 6:815–850CrossRef Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 6:815–850CrossRef
57.
Zurück zum Zitat O’Brien B et al (2008) Development of a new niobium-based alloy for vascular stent applications. J Mech Behav Biomed Mater 1:303–312CrossRef O’Brien B et al (2008) Development of a new niobium-based alloy for vascular stent applications. J Mech Behav Biomed Mater 1:303–312CrossRef
58.
Zurück zum Zitat O’Brien B et al (2008) Characterization of an NbTaWZr alloy designed for magnetic resonance angiography compatible stents. Biomaterials 29:4540–4545CrossRef O’Brien B et al (2008) Characterization of an NbTaWZr alloy designed for magnetic resonance angiography compatible stents. Biomaterials 29:4540–4545CrossRef
59.
Zurück zum Zitat Bewlay BP et al (2003) A review of very-high-temperature Nb-silicide-based composites. Metall Mater Trans 34A:2043–2052CrossRef Bewlay BP et al (2003) A review of very-high-temperature Nb-silicide-based composites. Metall Mater Trans 34A:2043–2052CrossRef
60.
Zurück zum Zitat Fujikura M et al (2004) Effect of alloy chemistry on the high temperature strengths and room temperature fracture toughness of advanced Nb-based alloys. Mater Trans 45(2):493–501CrossRef Fujikura M et al (2004) Effect of alloy chemistry on the high temperature strengths and room temperature fracture toughness of advanced Nb-based alloys. Mater Trans 45(2):493–501CrossRef
61.
Zurück zum Zitat Sha J et al (2003) Toughness and strength characteristics of Nb-W-Si ternary alloys prepared by arc melting. Metall Mater Trans 34A:2861–2871CrossRef Sha J et al (2003) Toughness and strength characteristics of Nb-W-Si ternary alloys prepared by arc melting. Metall Mater Trans 34A:2861–2871CrossRef
Metadaten
Titel
Niobium Biomaterials
verfasst von
Barry O’Brien
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46836-4_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.