Skip to main content
Erschienen in: Adsorption 4/2021

25.02.2021

Nitrogen rejection from landfill gas using Pressure Swing Adsorption

verfasst von: Federico Brandani, Pluton Pullumbi, Christian Monereau

Erschienen in: Adsorption | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Landfill gas (LFG) produced from municipal solid waste substrates represents an important source of RNG and the market for its upgrade is facing significant challenges in terms of energy consumption and operating costs. To ensure higher CH4 yields and avoid its release in the atmosphere, the LFG is collected below the atmospheric pressure by the use of a vacuum pump that results in the contamination of the LFG by air and particularly N2. Most of the proposed solutions, propose a two-step separation process in which the CO2 removal takes place in the first one while N2 removal in the second. This study focuses on the removal of the N2 from a decarbonated methane stream by a four-step PSA cycle. The impact of several parameters on process performance has been investigated using numerical simulations with the aim of simplifying the unit design and operational performances. In particular we investigate the effect of the pressure at the end of the desorption step showing that it is possible to operate the cycle with the desorption pressure slightly above atmospheric one. This allows avoiding the use of a dedicated vacuum pump with, however, a penalty in the energy required.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat Ryckebosch, E., Drouillon, M., Vervaeren, H.: Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35, 1633–1645 (2011)CrossRef Ryckebosch, E., Drouillon, M., Vervaeren, H.: Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35, 1633–1645 (2011)CrossRef
7.
Zurück zum Zitat Hosseini, S.E., Wahid, M.A.: Development of biogas combustion in combined heat and power generation. Renew. Sustain. Energy Rev. 40, 868–875 (2014)CrossRef Hosseini, S.E., Wahid, M.A.: Development of biogas combustion in combined heat and power generation. Renew. Sustain. Energy Rev. 40, 868–875 (2014)CrossRef
10.
12.
Zurück zum Zitat Abdeen, F.R.H., Mel, M., Jami, M.S., Ihsan, S.I., Ismail, A.F.: A review of chemical absorption of carbon dioxide for biogas upgrading. Chin. J. Chem. Eng 24, 693–702 (2016)CrossRef Abdeen, F.R.H., Mel, M., Jami, M.S., Ihsan, S.I., Ismail, A.F.: A review of chemical absorption of carbon dioxide for biogas upgrading. Chin. J. Chem. Eng 24, 693–702 (2016)CrossRef
15.
Zurück zum Zitat Baena-Moreno, F.M., Rodríguez-Galán, M., Vega, F., Vilches, L.F., Navarrete, B., Zhang, Z.: Biogas upgrading by cryogenic techniques. Environ. Chem. Lett. 17, 1251–1261 (2019)CrossRef Baena-Moreno, F.M., Rodríguez-Galán, M., Vega, F., Vilches, L.F., Navarrete, B., Zhang, Z.: Biogas upgrading by cryogenic techniques. Environ. Chem. Lett. 17, 1251–1261 (2019)CrossRef
16.
Zurück zum Zitat Medrano, J.A., Llosa-Tanco, M.A., Tanaka, D.A.P., Gallucci, F.: Membranes Utilization for Biogas Upgrading to Synthetic Natural Gas. Elsevier Inc., Amsterdam (2019)CrossRef Medrano, J.A., Llosa-Tanco, M.A., Tanaka, D.A.P., Gallucci, F.: Membranes Utilization for Biogas Upgrading to Synthetic Natural Gas. Elsevier Inc., Amsterdam (2019)CrossRef
18.
Zurück zum Zitat Andriani, D., Wresta, A., Atmaja, T.D., Saepudin, A.: A review on optimization production and upgrading biogas through CO 2 removal using various techniques. Appl. Biochem. Biotechnol. 172, 1909–1928 (2014)CrossRef Andriani, D., Wresta, A., Atmaja, T.D., Saepudin, A.: A review on optimization production and upgrading biogas through CO 2 removal using various techniques. Appl. Biochem. Biotechnol. 172, 1909–1928 (2014)CrossRef
24.
Zurück zum Zitat Santos, M.P.S., Grande, C.A., Rodrigues, A.E.: Pressure swing adsorption for biogas upgrading. Effect of recycling streams in pressure swing adsorption design. Ind. Eng. Chem. Res. 50, 974–985 (2011)CrossRef Santos, M.P.S., Grande, C.A., Rodrigues, A.E.: Pressure swing adsorption for biogas upgrading. Effect of recycling streams in pressure swing adsorption design. Ind. Eng. Chem. Res. 50, 974–985 (2011)CrossRef
29.
Zurück zum Zitat Grande, C.A., Blom, R.: Utilization of dual - PSA technology for natural gas upgrading and integrated CO2 capture. Energy Procedia 26, 2–14 (2012)CrossRef Grande, C.A., Blom, R.: Utilization of dual - PSA technology for natural gas upgrading and integrated CO2 capture. Energy Procedia 26, 2–14 (2012)CrossRef
30.
Zurück zum Zitat Baena-Moreno, F.M., le Saché, E., Pastor-Pérez, L., Reina, T.R.: Membrane-based technologies for biogas upgrading: a review. Environ. Chem. Lett. 18, 1649 (2020)CrossRef Baena-Moreno, F.M., le Saché, E., Pastor-Pérez, L., Reina, T.R.: Membrane-based technologies for biogas upgrading: a review. Environ. Chem. Lett. 18, 1649 (2020)CrossRef
31.
Zurück zum Zitat Baker, R.W., Lokhandwala, K.: Natural gas processing with membranes: an overview. Ind. Eng. Chem. Res 47, 2109–2121 (2008)CrossRef Baker, R.W., Lokhandwala, K.: Natural gas processing with membranes: an overview. Ind. Eng. Chem. Res 47, 2109–2121 (2008)CrossRef
34.
Zurück zum Zitat Zhang, Y., Sunarso, J., Liu, S., Wang, R.: Current status and development of membranes for CO2/CH4 separation: a review. Int. J. Greenhouse Gas Control 12, 84–107 (2013)CrossRef Zhang, Y., Sunarso, J., Liu, S., Wang, R.: Current status and development of membranes for CO2/CH4 separation: a review. Int. J. Greenhouse Gas Control 12, 84–107 (2013)CrossRef
35.
Zurück zum Zitat Mitariten, M., Mokhatab, S.: Integrated membrane technology for the removal of multiple components. In: Proceedings of the 2019 Annual GPA Midstream Convention. pp. 183–195 (2019) Mitariten, M., Mokhatab, S.: Integrated membrane technology for the removal of multiple components. In: Proceedings of the 2019 Annual GPA Midstream Convention. pp. 183–195 (2019)
36.
Zurück zum Zitat Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X.: Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 51, 521–532 (2015)CrossRef Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X.: Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 51, 521–532 (2015)CrossRef
37.
Zurück zum Zitat Paget, N., Lehman, J.-Y.: Process for cryogenic separation of a feed stream containing methane and air gases. Patent EP003465035B1 (2020) Paget, N., Lehman, J.-Y.: Process for cryogenic separation of a feed stream containing methane and air gases. Patent EP003465035B1 (2020)
38.
Zurück zum Zitat Briend, P., Lehman, J.Y., Zick, G.: A Novel Approach for Safe Design of a Cryogenic Bio-methane Purification Unit. Refrigeration Science and Technology, pp. 170–175. International Institute of Refrigeration, Paris (2014) Briend, P., Lehman, J.Y., Zick, G.: A Novel Approach for Safe Design of a Cryogenic Bio-methane Purification Unit. Refrigeration Science and Technology, pp. 170–175. International Institute of Refrigeration, Paris (2014)
39.
Zurück zum Zitat Mitariten, M.: Nitrogen removal from natural gas with the molecular gateTM adsorption process. In: GPA Annual Convention Proceedings. pp. 544–555 (2009) Mitariten, M.: Nitrogen removal from natural gas with the molecular gateTM adsorption process. In: GPA Annual Convention Proceedings. pp. 544–555 (2009)
41.
Zurück zum Zitat Effendy, S., Xu, C., Farooq, S.: Optimization of a pressure swing adsorption process for nitrogen rejection from natural gas. Ind. Eng. Chem. Res. 56, 5417 (2017)CrossRef Effendy, S., Xu, C., Farooq, S.: Optimization of a pressure swing adsorption process for nitrogen rejection from natural gas. Ind. Eng. Chem. Res. 56, 5417 (2017)CrossRef
50.
Zurück zum Zitat Ruthven, M.D., Farooq, S., Knaebel, K.S.: Pressure Swing Adsorption. VCH Publishers, New York (1994) Ruthven, M.D., Farooq, S., Knaebel, K.S.: Pressure Swing Adsorption. VCH Publishers, New York (1994)
Metadaten
Titel
Nitrogen rejection from landfill gas using Pressure Swing Adsorption
verfasst von
Federico Brandani
Pluton Pullumbi
Christian Monereau
Publikationsdatum
25.02.2021
Verlag
Springer US
Erschienen in
Adsorption / Ausgabe 4/2021
Print ISSN: 0929-5607
Elektronische ISSN: 1572-8757
DOI
https://doi.org/10.1007/s10450-021-00304-0

Weitere Artikel der Ausgabe 4/2021

Adsorption 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.