Skip to main content

2015 | OriginalPaper | Buchkapitel

Non-analytic Spin-Density Functionals

verfasst von : Martín A. Mosquera, Adam Wasserman

Erschienen in: Density Functionals

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We examine the integer discontinuity (or derivative discontinuity) of the exact energy functionals of Kohn–Sham density-functional theory for the spin-polarized case. The integer discontinuity and its cause, the piecewise linearity of the energy in the grand canonical ensemble, are required to improve the predictive power of density-functional approximations to the exchange-correlation energy. We show how any spin-polarized DFA can be adapted to display the proper integer discontinuity. The formalism we present here can be used to improve functionals further within spin density-functional theory and fragment-based formulations of DFT.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In this work by “subdensity-matrix” we mean a density matrix corresponding to a state with strictly an integer number of electrons.
 
2
The described ensemble is not a truly zero-temperature system because the spin-interactions are neglected.
 
3
Here we use Hund’s rules as a guide. Exceptions to these rules are known [39].
 
Literatur
1.
Zurück zum Zitat Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133CrossRef Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133CrossRef
2.
Zurück zum Zitat Perdew J, Kurth S (2003) Density functionals for non-relativistic Coulomb systems in the new century. In: Fiolhais C, Nogueira F, Marques M (eds) A primer in density functional theory, volume 620 of lecture notes in physics, chapter 1. Springer, Berlin, pp 1–55. ISBN 978-3-540-03083-6CrossRef Perdew J, Kurth S (2003) Density functionals for non-relativistic Coulomb systems in the new century. In: Fiolhais C, Nogueira F, Marques M (eds) A primer in density functional theory, volume 620 of lecture notes in physics, chapter 1. Springer, Berlin, pp 1–55. ISBN 978-3-540-03083-6CrossRef
3.
Zurück zum Zitat Elliott P, Lee D, Cangi A, Burke K (2008) Semiclassical origins of density functionals. Phys Rev Lett 100:256406CrossRef Elliott P, Lee D, Cangi A, Burke K (2008) Semiclassical origins of density functionals. Phys Rev Lett 100:256406CrossRef
4.
Zurück zum Zitat Lee D, Furche F, Burke K (2010) Accuracy of electron affinities of atoms in approximate density functional theory. J Phys Chem Lett 1(14):2124–2129CrossRef Lee D, Furche F, Burke K (2010) Accuracy of electron affinities of atoms in approximate density functional theory. J Phys Chem Lett 1(14):2124–2129CrossRef
5.
Zurück zum Zitat Csonka GI, Perdew JP, Ruzsinszky A (2010) Global hybrid functionals: a look at the engine under the hood. J Chem Theory Comput 6(12):3688–3703CrossRef Csonka GI, Perdew JP, Ruzsinszky A (2010) Global hybrid functionals: a look at the engine under the hood. J Chem Theory Comput 6(12):3688–3703CrossRef
6.
Zurück zum Zitat Ruzsinszky A, Perdew JP (2011) Twelve outstanding problems in ground-state density functional theory: a bouquet of puzzles. Comput Theor Chem 963(1):2–6CrossRef Ruzsinszky A, Perdew JP (2011) Twelve outstanding problems in ground-state density functional theory: a bouquet of puzzles. Comput Theor Chem 963(1):2–6CrossRef
7.
Zurück zum Zitat Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B 13(10):4274CrossRef Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B 13(10):4274CrossRef
8.
Zurück zum Zitat Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691CrossRef Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691CrossRef
9.
Zurück zum Zitat Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112(1):289–320CrossRef Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112(1):289–320CrossRef
10.
Zurück zum Zitat Perdew J (1985) What do the Kohn-Sham orbital energies mean? How do atoms dissociate? In: Dreizler RM, da Providência J (eds) Density functional methods in physics. Plenum, New York Perdew J (1985) What do the Kohn-Sham orbital energies mean? How do atoms dissociate? In: Dreizler RM, da Providência J (eds) Density functional methods in physics. Plenum, New York
11.
Zurück zum Zitat Tempel DG, Martinez TJ, Maitra NT (2009) Revisiting molecular dissociation in density functional theory: a simple model. J Chem Theory Comput 5(4):770–780CrossRef Tempel DG, Martinez TJ, Maitra NT (2009) Revisiting molecular dissociation in density functional theory: a simple model. J Chem Theory Comput 5(4):770–780CrossRef
12.
Zurück zum Zitat Miller JS, Epstein AJ, Reiff WM (1988) Ferromagnetic molecular charge-transfer complexes. Chem Rev 88(1):201–220CrossRef Miller JS, Epstein AJ, Reiff WM (1988) Ferromagnetic molecular charge-transfer complexes. Chem Rev 88(1):201–220CrossRef
13.
Zurück zum Zitat Kollmar C, Kahn O (1993) Ferromagnetic spin alignment in molecular systems: an orbital approach. Acc Chem Res 26(5):259–265CrossRef Kollmar C, Kahn O (1993) Ferromagnetic spin alignment in molecular systems: an orbital approach. Acc Chem Res 26(5):259–265CrossRef
14.
Zurück zum Zitat Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7(3):179–186CrossRef Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7(3):179–186CrossRef
15.
Zurück zum Zitat Mosquera MA, Wasserman A (2014) Integer discontinuity of density functional theory. Phys Rev A 89(5):052506CrossRef Mosquera MA, Wasserman A (2014) Integer discontinuity of density functional theory. Phys Rev A 89(5):052506CrossRef
16.
Zurück zum Zitat Mosquera MA, Wasserman A (2013) Partition density functional theory and its extension to the spin-polarized case. Mol Phys 111(4):505–515CrossRef Mosquera MA, Wasserman A (2013) Partition density functional theory and its extension to the spin-polarized case. Mol Phys 111(4):505–515CrossRef
17.
Zurück zum Zitat Perdew JP (1985) Density functional theory and the band gap problem. Int J Quantum Chem 28(S19):497–523CrossRef Perdew JP (1985) Density functional theory and the band gap problem. Int J Quantum Chem 28(S19):497–523CrossRef
18.
Zurück zum Zitat Harriman JE (1981) Orthonormal orbitals for the representation of an arbitrary density. Phys Rev A 24(2):680CrossRef Harriman JE (1981) Orthonormal orbitals for the representation of an arbitrary density. Phys Rev A 24(2):680CrossRef
19.
Zurück zum Zitat Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci U S A 76(12):6062–6065CrossRef Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci U S A 76(12):6062–6065CrossRef
20.
Zurück zum Zitat Lieb EH (1983) Density functionals for coulomb systems. Int J of Quantum Chem 24:243–277CrossRef Lieb EH (1983) Density functionals for coulomb systems. Int J of Quantum Chem 24:243–277CrossRef
21.
Zurück zum Zitat Valone SM (1980) Consequences of extending 1-matrix energy functionals from pure-state representable to all ensemble representable 1 matrices. J Chem Phys 73(3):1344–1349CrossRef Valone SM (1980) Consequences of extending 1-matrix energy functionals from pure-state representable to all ensemble representable 1 matrices. J Chem Phys 73(3):1344–1349CrossRef
22.
Zurück zum Zitat Hille E, Phillips RS (1957) Functional analysis and semi-groups, vol 31. American Mathematical Society, Providence Hille E, Phillips RS (1957) Functional analysis and semi-groups, vol 31. American Mathematical Society, Providence
23.
Zurück zum Zitat Hormander L (1994) Notions of convexity, vol 12. Springer, Birkhäuser, Boston Hormander L (1994) Notions of convexity, vol 12. Springer, Birkhäuser, Boston
24.
Zurück zum Zitat Lammert PE (2007) Differentiability of Lieb functional in electronic density functional theory. Int J Quantum Chem 107(10):1943–1953CrossRef Lammert PE (2007) Differentiability of Lieb functional in electronic density functional theory. Int J Quantum Chem 107(10):1943–1953CrossRef
25.
Zurück zum Zitat Englisch H, Englisch R (1984) Exact density functionals for ground-state energies. I. General results. Phys Status Solidi B 123(2):711–721CrossRef Englisch H, Englisch R (1984) Exact density functionals for ground-state energies. I. General results. Phys Status Solidi B 123(2):711–721CrossRef
26.
Zurück zum Zitat Englisch H, Englisch R (1984) Exact density functionals for ground-state energies II. Details and remarks. Phys Status Solidi B 124(1):373–379CrossRef Englisch H, Englisch R (1984) Exact density functionals for ground-state energies II. Details and remarks. Phys Status Solidi B 124(1):373–379CrossRef
27.
Zurück zum Zitat Chayes JT, Chayes L, Ruskai MB (1985) Density functional approach to quantum lattice systems. J Stat Phys 38(3–4):497–518CrossRef Chayes JT, Chayes L, Ruskai MB (1985) Density functional approach to quantum lattice systems. J Stat Phys 38(3–4):497–518CrossRef
28.
Zurück zum Zitat Ayers PW (2006) Axiomatic formulations of the Hohenberg-Kohn functional. Phys Rev A 73(1):012513CrossRef Ayers PW (2006) Axiomatic formulations of the Hohenberg-Kohn functional. Phys Rev A 73(1):012513CrossRef
29.
Zurück zum Zitat Kvaal S, Ekström U, Teale AM, Helgaker T (2014) Differentiable but exact formulation of density-functional theory. J Chem Phys 140(18):18A518CrossRef Kvaal S, Ekström U, Teale AM, Helgaker T (2014) Differentiable but exact formulation of density-functional theory. J Chem Phys 140(18):18A518CrossRef
32.
Zurück zum Zitat Mosquera MA (2013) Action formalism of time-dependent density-functional theory. Phys Rev A 88:022515CrossRef Mosquera MA (2013) Action formalism of time-dependent density-functional theory. Phys Rev A 88:022515CrossRef
33.
Zurück zum Zitat Rabuck AD, Scuseria GE (1999) Improving self-consistent field convergence by varying occupation numbers. J Chem Phys 110(2):695–700CrossRef Rabuck AD, Scuseria GE (1999) Improving self-consistent field convergence by varying occupation numbers. J Chem Phys 110(2):695–700CrossRef
34.
Zurück zum Zitat Cancès E (2001) Self-consistent field algorithms for Kohn–Sham models with fractional occupation numbers. J Chem Phys 114(24):10616–10622CrossRef Cancès E (2001) Self-consistent field algorithms for Kohn–Sham models with fractional occupation numbers. J Chem Phys 114(24):10616–10622CrossRef
35.
Zurück zum Zitat Capelle K, Vignale G (2001) Nonuniqueness of the potentials of spin-density-functional theory. Phys Rev Lett 86(24):5546CrossRef Capelle K, Vignale G (2001) Nonuniqueness of the potentials of spin-density-functional theory. Phys Rev Lett 86(24):5546CrossRef
36.
Zurück zum Zitat Gidopoulos NI (2007) Potential in spin-density-functional theory of noncollinear magnetism determined by the many-electron ground state. Phys Rev B 75:134408CrossRef Gidopoulos NI (2007) Potential in spin-density-functional theory of noncollinear magnetism determined by the many-electron ground state. Phys Rev B 75:134408CrossRef
37.
Zurück zum Zitat Kutzelnigg W, Morgan JD III (1996) Hund’s rules. Z Phys D Atom Mol Cl 36(3–4):197–214CrossRef Kutzelnigg W, Morgan JD III (1996) Hund’s rules. Z Phys D Atom Mol Cl 36(3–4):197–214CrossRef
38.
Zurück zum Zitat Boyd RJ (1984) A quantum mechanical explanation for Hund’s multiplicity rule. Nature 310:480–481CrossRef Boyd RJ (1984) A quantum mechanical explanation for Hund’s multiplicity rule. Nature 310:480–481CrossRef
39.
Zurück zum Zitat Kollmar H, Staemmler V (1978) Violation of Hund’s rule by spin polarization in molecules. Theor Chim Acta 48(3):223–239CrossRef Kollmar H, Staemmler V (1978) Violation of Hund’s rule by spin polarization in molecules. Theor Chim Acta 48(3):223–239CrossRef
40.
Zurück zum Zitat Botch BH, Dunning TH Jr (1982) Theoretical characterization of negative ions. Calculation of the electron affinities of carbon, oxygen, and fluorine. J Chem Phys 76(12):6046–6056CrossRef Botch BH, Dunning TH Jr (1982) Theoretical characterization of negative ions. Calculation of the electron affinities of carbon, oxygen, and fluorine. J Chem Phys 76(12):6046–6056CrossRef
41.
Zurück zum Zitat Feller D, Davidson ER (1985) Ab initio multireference CI determinations of the electron affinity of carbon and oxygen. J Chem Phys 82(9):4135–4141CrossRef Feller D, Davidson ER (1985) Ab initio multireference CI determinations of the electron affinity of carbon and oxygen. J Chem Phys 82(9):4135–4141CrossRef
42.
Zurück zum Zitat Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11(46):10757–10816CrossRef Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11(46):10757–10816CrossRef
43.
Zurück zum Zitat Balawender R (2012) Thermodynamic extension of density-functional theory. III. Zero-temperature limit of the ensemble spin-density functional theory. arXiv preprint arXiv:1212.1367 Balawender R (2012) Thermodynamic extension of density-functional theory. III. Zero-temperature limit of the ensemble spin-density functional theory. arXiv preprint arXiv:1212.1367
44.
Zurück zum Zitat Malek AM, Balawender R (2013) Discontinuities of energy derivatives in spin-density functional theory. arXiv preprint arXiv:1310.6918 Malek AM, Balawender R (2013) Discontinuities of energy derivatives in spin-density functional theory. arXiv preprint arXiv:1310.6918
45.
Zurück zum Zitat von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case. J Phys C Solid State Phys 5(13):1629CrossRef von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case. J Phys C Solid State Phys 5(13):1629CrossRef
46.
Zurück zum Zitat Ullrich CA, Kohn W (2001) Kohn-Sham theory for ground-state ensembles. Phys Rev Lett 87(9):093001CrossRef Ullrich CA, Kohn W (2001) Kohn-Sham theory for ground-state ensembles. Phys Rev Lett 87(9):093001CrossRef
47.
Zurück zum Zitat Vydrov OA, Scuseria GE, Perdew JP (2007) Tests of functionals for systems with fractional electron number. J Chem Phys 126(15):154109CrossRef Vydrov OA, Scuseria GE, Perdew JP (2007) Tests of functionals for systems with fractional electron number. J Chem Phys 126(15):154109CrossRef
48.
Zurück zum Zitat Almbladh C-O, Von Barth U (1985) Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. Phys Rev B 31(6):3231CrossRef Almbladh C-O, Von Barth U (1985) Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. Phys Rev B 31(6):3231CrossRef
49.
Zurück zum Zitat Cohen MH, Wasserman A (2007) On the foundations of chemical reactivity theory. J Phys Chem A 111(11):2229–2242CrossRef Cohen MH, Wasserman A (2007) On the foundations of chemical reactivity theory. J Phys Chem A 111(11):2229–2242CrossRef
50.
Zurück zum Zitat Elliott P, Burke K, Cohen MH, Wasserman A (2010) Partition density-functional theory. Phys Rev A 82(2):024501CrossRef Elliott P, Burke K, Cohen MH, Wasserman A (2010) Partition density-functional theory. Phys Rev A 82(2):024501CrossRef
51.
Zurück zum Zitat Nafziger J, Wasserman A (2012) Delocalization and static correlation in partition density-functional theory. arXiv preprint arXiv:1305.4966 Nafziger J, Wasserman A (2012) Delocalization and static correlation in partition density-functional theory. arXiv preprint arXiv:1305.4966
Metadaten
Titel
Non-analytic Spin-Density Functionals
verfasst von
Martín A. Mosquera
Adam Wasserman
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/128_2014_619