Skip to main content

2022 | OriginalPaper | Buchkapitel

20. Non-boiling Two-Phase Heat Transfer

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter first presents parametric analysis of the two-phase non-boiling heat transfer coefficient and then provides some recent correlations for prediction of heat transfer coefficient and the application of those correlations to a practical problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barnea, D., Shoham, O., & Taitel, Y. (1982). Flow pattern transition for downward inclined two-phase flow: Horizontal to vertical. Chemical Engineering Science, 37, 735–740.CrossRef Barnea, D., Shoham, O., & Taitel, Y. (1982). Flow pattern transition for downward inclined two-phase flow: Horizontal to vertical. Chemical Engineering Science, 37, 735–740.CrossRef
Zurück zum Zitat Bhagwat, S. M., & Ghajar, A. J. (2014). A flow pattern independent drift flux model based void fraction correlation for a wide range of gas-liquid two-phase flow. International Journal of Multiphase Flow, 59, 186–205.CrossRef Bhagwat, S. M., & Ghajar, A. J. (2014). A flow pattern independent drift flux model based void fraction correlation for a wide range of gas-liquid two-phase flow. International Journal of Multiphase Flow, 59, 186–205.CrossRef
Zurück zum Zitat Bhagwat, S. M., & Ghajar, A. J. (2016). Experimental investigation of non-boiling gas-liquid two-phase flow in upward inclined pipes. Experimental Thermal and Fluid Science, 79, 301–318.CrossRef Bhagwat, S. M., & Ghajar, A. J. (2016). Experimental investigation of non-boiling gas-liquid two-phase flow in upward inclined pipes. Experimental Thermal and Fluid Science, 79, 301–318.CrossRef
Zurück zum Zitat Bhagwat, S. M., & Ghajar, A. J. (2017). Experimental investigation of non-boiling gas-liquid two-phase flow in downward inclined pipes. Experimental Thermal and Fluid Science, 89, 219–237.CrossRef Bhagwat, S. M., & Ghajar, A. J. (2017). Experimental investigation of non-boiling gas-liquid two-phase flow in downward inclined pipes. Experimental Thermal and Fluid Science, 89, 219–237.CrossRef
Zurück zum Zitat Bhagwat, S. M., Mollamahmutoglu, M., & Ghajar, A. J. (2012). Experimental investigation and empirical analysis of non-boiling gas-liquid two-phase heat transfer in vertical downward pipe orientation. Proceedings of ASME 2012 Summer Heat Transfer Conference, 2: 349–359. Bhagwat, S. M., Mollamahmutoglu, M., & Ghajar, A. J. (2012). Experimental investigation and empirical analysis of non-boiling gas-liquid two-phase heat transfer in vertical downward pipe orientation. Proceedings of ASME 2012 Summer Heat Transfer Conference, 2: 349–359.
Zurück zum Zitat Blasius, H. (1913). Das Anhlichkeitsgesetz bei Reibungsvorgangen in Flussikeiten. Gebiete Ingenieurw, 134. Blasius, H. (1913). Das Anhlichkeitsgesetz bei Reibungsvorgangen in Flussikeiten. Gebiete Ingenieurw, 134.
Zurück zum Zitat Churchill, S. W. (1977a). Comprehensive correlating equations for heat, mass and momentum transfer in fully developed flow in smooth tubes. Industrial and Engineering Chemistry, 16, 109–116. Churchill, S. W. (1977a). Comprehensive correlating equations for heat, mass and momentum transfer in fully developed flow in smooth tubes. Industrial and Engineering Chemistry, 16, 109–116.
Zurück zum Zitat Churchill, S. W. (1977b). Friction factor equation spans all fluid-flow regimes. Chemical Engineering Journal, 7, 91–92. Churchill, S. W. (1977b). Friction factor equation spans all fluid-flow regimes. Chemical Engineering Journal, 7, 91–92.
Zurück zum Zitat Colebrook, C. F. (1939). Turbulent flow in pipes, with particular reference to the transition between the smooth and rough pipe laws. Journal of the Institution of Civil Engineers, 11, 1938–1939.CrossRef Colebrook, C. F. (1939). Turbulent flow in pipes, with particular reference to the transition between the smooth and rough pipe laws. Journal of the Institution of Civil Engineers, 11, 1938–1939.CrossRef
Zurück zum Zitat Fukano, T., & Ousaka, A. (1989). Prediction of the circumferential distribution of film thickness in horizontal and near-horizontal gas–liquid annular flows. International Journal of Multiphase Flow, 15, 403–419.CrossRef Fukano, T., & Ousaka, A. (1989). Prediction of the circumferential distribution of film thickness in horizontal and near-horizontal gas–liquid annular flows. International Journal of Multiphase Flow, 15, 403–419.CrossRef
Zurück zum Zitat Ghajar, A. J., & Bhagwat, S. M. (2013). Effect of void fraction and two-phase dynamic viscosity models on prediction of hydrostatic and frictional pressure drop in vertical upward gas-liquid two-phase flow. Heat Transfer Engineering, 34(13), 1044–1059.CrossRef Ghajar, A. J., & Bhagwat, S. M. (2013). Effect of void fraction and two-phase dynamic viscosity models on prediction of hydrostatic and frictional pressure drop in vertical upward gas-liquid two-phase flow. Heat Transfer Engineering, 34(13), 1044–1059.CrossRef
Zurück zum Zitat Ghajar, A. J., & Bhagwat, S. M. (2014b). Chapter 4: Flow patterns, void fraction and pressure drop in gas-liquid two-phase flow at different pipe orientations. In Frontiers and progress in multiphase flow (pp. 157–212). Springer.CrossRef Ghajar, A. J., & Bhagwat, S. M. (2014b). Chapter 4: Flow patterns, void fraction and pressure drop in gas-liquid two-phase flow at different pipe orientations. In Frontiers and progress in multiphase flow (pp. 157–212). Springer.CrossRef
Zurück zum Zitat Ghajar, A. J., & Bhagwat, S. M. (2017). Chapter 3: Gas-liquid flow in ducts. In E. E. Michaelides, C. T. Crowe, & J. D. Schwarzkopf (Eds.), Handbook of multiphase flow (2nd ed., pp. 287–356). CRC Press/Taylor & Francis. Ghajar, A. J., & Bhagwat, S. M. (2017). Chapter 3: Gas-liquid flow in ducts. In E. E. Michaelides, C. T. Crowe, & J. D. Schwarzkopf (Eds.), Handbook of multiphase flow (2nd ed., pp. 287–356). CRC Press/Taylor & Francis.
Zurück zum Zitat Ghajar, A. J., & Tang, C. C. (2009). Advances in void fraction, flow pattern maps and non-boiling heat transfer two-phase flow in pipes with various inclinations. Advanced Multiphase Flow Heat Transfer, 1, 1–52.CrossRef Ghajar, A. J., & Tang, C. C. (2009). Advances in void fraction, flow pattern maps and non-boiling heat transfer two-phase flow in pipes with various inclinations. Advanced Multiphase Flow Heat Transfer, 1, 1–52.CrossRef
Zurück zum Zitat Ghajar, A. J., & Tang, C. C. (2010). Importance of non-boiling two phase flow heat transfer in pipes for industrial applications. Heat Transfer Engineering, 31(9), 711–732.CrossRef Ghajar, A. J., & Tang, C. C. (2010). Importance of non-boiling two phase flow heat transfer in pipes for industrial applications. Heat Transfer Engineering, 31(9), 711–732.CrossRef
Zurück zum Zitat Kim, J., & Ghajar, A. J. (2006). A general heat transfer correlation for non-boiling gas-liquid flow with different flow patterns in horizontal pipes. International Journal of Multiphase Flow, 32, 447–465.CrossRef Kim, J., & Ghajar, A. J. (2006). A general heat transfer correlation for non-boiling gas-liquid flow with different flow patterns in horizontal pipes. International Journal of Multiphase Flow, 32, 447–465.CrossRef
Zurück zum Zitat Kim, D., Ghajar, A. J., Dougherty, R. L., & Ryali, V. K. (1999). Comparison of 20 two-phase heat transfer correlations with seven sets of experimental data, including flow pattern and tube inclination effects. Heat Transfer Engineering, 20(1), 15–40.CrossRef Kim, D., Ghajar, A. J., Dougherty, R. L., & Ryali, V. K. (1999). Comparison of 20 two-phase heat transfer correlations with seven sets of experimental data, including flow pattern and tube inclination effects. Heat Transfer Engineering, 20(1), 15–40.CrossRef
Zurück zum Zitat Kim, D., Ghajar, A. J., & Dougherty, R. L. (2000). Robust heat transfer correlation for turbulent gas-liquid flow in vertical pipes. Journal of Thermophysics Heat Transfer, 14, 574–578.CrossRef Kim, D., Ghajar, A. J., & Dougherty, R. L. (2000). Robust heat transfer correlation for turbulent gas-liquid flow in vertical pipes. Journal of Thermophysics Heat Transfer, 14, 574–578.CrossRef
Zurück zum Zitat Lockhart, R. W., & Martinelli, R. C. (1949). Proposed correlation of data for isothermal two-phase, two component flow in pipes. Chemical Engineering Progress, 45, 39–48. Lockhart, R. W., & Martinelli, R. C. (1949). Proposed correlation of data for isothermal two-phase, two component flow in pipes. Chemical Engineering Progress, 45, 39–48.
Zurück zum Zitat Rezkallah, K. S., & Sims, G. E. (1987). An examination of correlations of mean heat transfer coefficients in two-phase and two-component flow in vertical tubes. AIChE Symposium Series, 83, 109–114. Rezkallah, K. S., & Sims, G. E. (1987). An examination of correlations of mean heat transfer coefficients in two-phase and two-component flow in vertical tubes. AIChE Symposium Series, 83, 109–114.
Zurück zum Zitat Spedding, P. L., Woods, G. S., Raghunathan, S. R., & Watterson, J. K. (2000). Flow pattern, holdup and pressure drop in vertical and near vertical two and three phase upflow. Chemical Engineering Research and Design, 78(Part A), 404–418.CrossRef Spedding, P. L., Woods, G. S., Raghunathan, S. R., & Watterson, J. K. (2000). Flow pattern, holdup and pressure drop in vertical and near vertical two and three phase upflow. Chemical Engineering Research and Design, 78(Part A), 404–418.CrossRef
Zurück zum Zitat Tang, C. C. (2011). A study of heat transfer in non-boiling two-phase gas liquid flow in pipes for horizontal, slightly inclined, and vertical orientations, Ph.D. Thesis, Oklahoma State University, Stillwater, Oklahoma. Tang, C. C. (2011). A study of heat transfer in non-boiling two-phase gas liquid flow in pipes for horizontal, slightly inclined, and vertical orientations, Ph.D. Thesis, Oklahoma State University, Stillwater, Oklahoma.
Zurück zum Zitat Tang, C. C., & Ghajar, A. J. (2011). A mechanistic heat transfer correlation for non-boiling two-phase flow in horizontal, inclined, and vertical pipes, Proceedings of AJTEC 2011 ASME/JSME 8th Thermal Engineering Joint Conference, Paper No. AJTEC2011-44114. Tang, C. C., & Ghajar, A. J. (2011). A mechanistic heat transfer correlation for non-boiling two-phase flow in horizontal, inclined, and vertical pipes, Proceedings of AJTEC 2011 ASME/JSME 8th Thermal Engineering Joint Conference, Paper No. AJTEC2011-44114.
Zurück zum Zitat Woldesemayat, M. A., & Ghajar, A. J. (2007). Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. International Journal of Multiphase Flow, 33, 347–370.CrossRef Woldesemayat, M. A., & Ghajar, A. J. (2007). Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. International Journal of Multiphase Flow, 33, 347–370.CrossRef
Metadaten
Titel
Non-boiling Two-Phase Heat Transfer
verfasst von
Afshin J. Ghajar
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-87281-6_20

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.