Skip to main content
Erschienen in:
Buchtitelbild

2013 | OriginalPaper | Buchkapitel

1. Nonautonomous Dynamical Systems in the Life Sciences

verfasst von : Peter E. Kloeden, Christian Pötzsche

Erschienen in: Nonautonomous Dynamical Systems in the Life Sciences

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time-dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. In this survey, we introduce basic concepts and tools for appropriate nonautonomous dynamical systems and apply them to various representative biological models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B.M. Adams, H.T. Banks, J.E. Banks, J.D. Stark, Population dynamics models in plant-insect herbivore-pesticide interactions. Math. Biosci. 196(1), 39–64 (2005)CrossRefMATHMathSciNet B.M. Adams, H.T. Banks, J.E. Banks, J.D. Stark, Population dynamics models in plant-insect herbivore-pesticide interactions. Math. Biosci. 196(1), 39–64 (2005)CrossRefMATHMathSciNet
2.
Zurück zum Zitat L.Ya. Adrianova, Introduction to Linear Systems of Differential Equations. Translations of Mathematical Monographs, vol. 146 (AMS, Providence, 1995) L.Ya. Adrianova, Introduction to Linear Systems of Differential Equations. Translations of Mathematical Monographs, vol. 146 (AMS, Providence, 1995)
3.
Zurück zum Zitat H. Amann, Ordinary Differential Equations: An Introduction to Nonlinear Analysis. Studies in Mathematics, vol. 13 (Walter De Gruyter, Berlin, 1990) H. Amann, Ordinary Differential Equations: An Introduction to Nonlinear Analysis. Studies in Mathematics, vol. 13 (Walter De Gruyter, Berlin, 1990)
4.
5.
Zurück zum Zitat B. Aulbach, T. Wanner, in Integral Manifolds for Carathéodory Type Differential Equations in Banach Spaces, ed. by B. Aulbach, F. Colonius. Six Lectures on Dynamical Systems (World Scientific, Singapore, 1996), pp. 45–119 B. Aulbach, T. Wanner, in Integral Manifolds for Carathéodory Type Differential Equations in Banach Spaces, ed. by B. Aulbach, F. Colonius. Six Lectures on Dynamical Systems (World Scientific, Singapore, 1996), pp. 45–119
6.
Zurück zum Zitat M. Bachar, J. Batzel, S. Ditlevsen, Stochastic Biomathematical Models. Lecture Notes in Mathematics (Mathematical Biosciences Subseries), vol. 2058 (Springer, Berlin, 2013) M. Bachar, J. Batzel, S. Ditlevsen, Stochastic Biomathematical Models. Lecture Notes in Mathematics (Mathematical Biosciences Subseries), vol. 2058 (Springer, Berlin, 2013)
7.
Zurück zum Zitat H.T. Banks, J.E. Banks, S.L. Joyner, J.D. Stark, Dynamic models for insect mortality due to exposure to insecticides. Math. Comput. Model. 48(1–2), 316–332 (2008)CrossRefMATHMathSciNet H.T. Banks, J.E. Banks, S.L. Joyner, J.D. Stark, Dynamic models for insect mortality due to exposure to insecticides. Math. Comput. Model. 48(1–2), 316–332 (2008)CrossRefMATHMathSciNet
8.
Zurück zum Zitat J. Baranyi, T.A. Roberts, P. McClure, A non-autonomous differential equation to model bacterial growth. Food Microbiol. 10, 43–59 (1993)CrossRef J. Baranyi, T.A. Roberts, P. McClure, A non-autonomous differential equation to model bacterial growth. Food Microbiol. 10, 43–59 (1993)CrossRef
9.
Zurück zum Zitat M. Barenco, D. Tomescu, D. Brewer, R. Callard, J. Stark, M. Hubank, Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol. 7(3) (2006) M. Barenco, D. Tomescu, D. Brewer, R. Callard, J. Stark, M. Hubank, Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol. 7(3) (2006)
10.
Zurück zum Zitat B. Baeumer et al., Predicting the drug release kinetics of matrix tablets. Discrete Contin. Dyn. Syst. Ser. B 17(2), 261–277 (2009)CrossRefMathSciNet B. Baeumer et al., Predicting the drug release kinetics of matrix tablets. Discrete Contin. Dyn. Syst. Ser. B 17(2), 261–277 (2009)CrossRefMathSciNet
11.
Zurück zum Zitat C. Castillo-Chavez, B. Song, Dynamical models of tubercolosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004)CrossRefMATHMathSciNet C. Castillo-Chavez, B. Song, Dynamical models of tubercolosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004)CrossRefMATHMathSciNet
12.
Zurück zum Zitat D.N. Cheban, P.E. Kloeden, B. Schmalfuß, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems. Nonlin. Dynam. Syst. Theory 2, 9–28 (2002) D.N. Cheban, P.E. Kloeden, B. Schmalfuß, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems. Nonlin. Dynam. Syst. Theory 2, 9–28 (2002)
13.
Zurück zum Zitat S.-N. Chow, C. Li, D. Wang, Normal Forms and Bifurcation of Planar Vector Fields (Cambridge University Press, Cambridge, 1994)CrossRefMATH S.-N. Chow, C. Li, D. Wang, Normal Forms and Bifurcation of Planar Vector Fields (Cambridge University Press, Cambridge, 1994)CrossRefMATH
14.
Zurück zum Zitat I. Chueshov, Monotone Random Systems Theory and Applications. Lecture Notes in Mathematics, vol. 1779 (Springer, Berlin, 2002) I. Chueshov, Monotone Random Systems Theory and Applications. Lecture Notes in Mathematics, vol. 1779 (Springer, Berlin, 2002)
15.
Zurück zum Zitat C.F. Clancy, M.J.A. O’Callaghan, T.C. Kelly, A multi-scale problem arising in a model of avian flu virus in a seabird colony. J. Phys. Conf. Ser. 55, 45–54 (2006)CrossRef C.F. Clancy, M.J.A. O’Callaghan, T.C. Kelly, A multi-scale problem arising in a model of avian flu virus in a seabird colony. J. Phys. Conf. Ser. 55, 45–54 (2006)CrossRef
16.
Zurück zum Zitat N.G. Cogan, Effects of persister formation on bacterial response to dosing. J. Theor. Biol. 238(3), 694–703 (2006)CrossRefMathSciNet N.G. Cogan, Effects of persister formation on bacterial response to dosing. J. Theor. Biol. 238(3), 694–703 (2006)CrossRefMathSciNet
17.
Zurück zum Zitat F. Colonius, W. Kliemann, The Dynamics of Control (Birkhäuser, Basel, 1999) F. Colonius, W. Kliemann, The Dynamics of Control (Birkhäuser, Basel, 1999)
18.
Zurück zum Zitat W.A. Coppel, Dichotomies in Stability Theory. Lecture Notes in Mathematics, vol. 629 (Springer, Berlin, 1978) W.A. Coppel, Dichotomies in Stability Theory. Lecture Notes in Mathematics, vol. 629 (Springer, Berlin, 1978)
19.
Zurück zum Zitat J.L. Daleckiĭ, M.G. Kreĭn, Stability of Solutions of Differential Equations in Banach Space. Translations of Mathematical Monographs, vol. 43 (AMS, Providence, 1974) J.L. Daleckiĭ, M.G. Kreĭn, Stability of Solutions of Differential Equations in Banach Space. Translations of Mathematical Monographs, vol. 43 (AMS, Providence, 1974)
20.
Zurück zum Zitat G. De Nicolao et al., A Minimal Model Describing the Effect of Drug Administration on Tumor Growth Dynamics. 14th Mediterranean Conference on Control and Automation (2006). doi:10.1109/MED.2006.328783 G. De Nicolao et al., A Minimal Model Describing the Effect of Drug Administration on Tumor Growth Dynamics. 14th Mediterranean Conference on Control and Automation (2006). doi:10.1109/MED.2006.328783
21.
Zurück zum Zitat L.G. de Pillis, A. Radunskaya, The dynamics of an optimally controlled tumor model: a case study, Math. Comput. Model. 37, 1221–1244 (2003)CrossRefMATH L.G. de Pillis, A. Radunskaya, The dynamics of an optimally controlled tumor model: a case study, Math. Comput. Model. 37, 1221–1244 (2003)CrossRefMATH
22.
Zurück zum Zitat L. Dieci, E.S. van Vleck, Lyapunov and Other Spectra: A Survey. Collected Lectures on the Preservation of Stability under Discretization (SIAM, Philadelphia, 2002), pp. 197–218 L. Dieci, E.S. van Vleck, Lyapunov and Other Spectra: A Survey. Collected Lectures on the Preservation of Stability under Discretization (SIAM, Philadelphia, 2002), pp. 197–218
23.
Zurück zum Zitat L. Dieci, E.S. van Vleck, Lyapunov and Sacker-Sell spectral intervals. J. Dyn. Differ. Equ. 19(2), 265–293 (2007)CrossRefMATH L. Dieci, E.S. van Vleck, Lyapunov and Sacker-Sell spectral intervals. J. Dyn. Differ. Equ. 19(2), 265–293 (2007)CrossRefMATH
24.
Zurück zum Zitat J. Dushoff, J.B. Plotkin, S.A. Levin, D.J.D. Earn, Dynamic resonance can account for seasonality of influenza epidemics. Proc. Natl. Acad. Sci. USA 101(48), 16915–16916 (2004)CrossRef J. Dushoff, J.B. Plotkin, S.A. Levin, D.J.D. Earn, Dynamic resonance can account for seasonality of influenza epidemics. Proc. Natl. Acad. Sci. USA 101(48), 16915–16916 (2004)CrossRef
25.
Zurück zum Zitat R. Eftimie, J.L. Bramson, D.J.D. Earn, Interaction between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol. 73, 2–32 (2011)CrossRefMATHMathSciNet R. Eftimie, J.L. Bramson, D.J.D. Earn, Interaction between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol. 73, 2–32 (2011)CrossRefMATHMathSciNet
26.
27.
Zurück zum Zitat W. Garira, S.D. Musekwa, T. Shiri, Optimal control of combined therapy in a single strain HIV-1 model. Electron. J. Differ. Equ. 2005(52), 1–22 (2005)MathSciNet W. Garira, S.D. Musekwa, T. Shiri, Optimal control of combined therapy in a single strain HIV-1 model. Electron. J. Differ. Equ. 2005(52), 1–22 (2005)MathSciNet
28.
Zurück zum Zitat I. Győri, S. Michelson, J. Leith, Time-dependent subpopulation induction in heterogeneous tumors. Bull. Math. Biol. 50(6,) 681–696 (1988) I. Győri, S. Michelson, J. Leith, Time-dependent subpopulation induction in heterogeneous tumors. Bull. Math. Biol. 50(6,) 681–696 (1988)
29.
Zurück zum Zitat P. Hahnfeldt, D. Panigrahy, J. Folkman, L.R. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999) P. Hahnfeldt, D. Panigrahy, J. Folkman, L.R. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999)
30.
Zurück zum Zitat G. Herzog, R. Redheffer, Nonautonomous SEIRS and Thron models for epidemiology and cell biology. Nonlinear Anal. Real World Appl. 4, 33–44 (2004)CrossRefMathSciNet G. Herzog, R. Redheffer, Nonautonomous SEIRS and Thron models for epidemiology and cell biology. Nonlinear Anal. Real World Appl. 4, 33–44 (2004)CrossRefMathSciNet
31.
Zurück zum Zitat M.W. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra (Academic, Boston, 1974)MATH M.W. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra (Academic, Boston, 1974)MATH
32.
Zurück zum Zitat Z. Hu, P. Bi, W. Ma, S. Ruan, Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete Contin. Dyn. Syst. Ser. B 15(3), 93–112 (2011)MATHMathSciNet Z. Hu, P. Bi, W. Ma, S. Ruan, Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete Contin. Dyn. Syst. Ser. B 15(3), 93–112 (2011)MATHMathSciNet
33.
Zurück zum Zitat T. Hüls, Homoclinic trajectories of non-autonomous maps. J. Differ. Equ. Appl. 17(1), 9–31 (2011)CrossRefMATH T. Hüls, Homoclinic trajectories of non-autonomous maps. J. Differ. Equ. Appl. 17(1), 9–31 (2011)CrossRefMATH
34.
35.
Zurück zum Zitat M. Imran, H.L. Smith, The dynamics of bacterial infection, innate immune response, and antibiotic treatment. Discrete Contin. Dyn. Syst. Ser. B 8(1), 127–145 (2007)CrossRefMATHMathSciNet M. Imran, H.L. Smith, The dynamics of bacterial infection, innate immune response, and antibiotic treatment. Discrete Contin. Dyn. Syst. Ser. B 8(1), 127–145 (2007)CrossRefMATHMathSciNet
36.
Zurück zum Zitat B. Janssen, L. Révéesz, Analysis of the growth of tumor cell populations. Math. Biosci. 19(1–2), 131–154 (1974)CrossRef B. Janssen, L. Révéesz, Analysis of the growth of tumor cell populations. Math. Biosci. 19(1–2), 131–154 (1974)CrossRef
37.
Zurück zum Zitat R.A. Johnson, F. Mantellini, A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete Contin. Dyn. Syst. 9(1), 209–224 (2003)MATHMathSciNet R.A. Johnson, F. Mantellini, A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete Contin. Dyn. Syst. 9(1), 209–224 (2003)MATHMathSciNet
38.
Zurück zum Zitat G.P. Karev, A.S. Novozhilov, E.V. Koonin, Mathematical modeling of tumor therapy with oncolytic viruses: effects of parametric heterogeneity on cell dynamics. Biol. Direct 1 (2006) G.P. Karev, A.S. Novozhilov, E.V. Koonin, Mathematical modeling of tumor therapy with oncolytic viruses: effects of parametric heterogeneity on cell dynamics. Biol. Direct 1 (2006)
39.
Zurück zum Zitat J. Keener, J. Sneyd, Mathematical Physiology, vol. I & II, 2nd edn. (Springer, Heidelberg, 2009) J. Keener, J. Sneyd, Mathematical Physiology, vol. I & II, 2nd edn. (Springer, Heidelberg, 2009)
40.
Zurück zum Zitat D. Kirschner, G.F. Webb, A model for treatment strategy in the chemotherapy of AIDS. Bull. Math. Biol. 58(1), 367–390 (1996)CrossRefMATH D. Kirschner, G.F. Webb, A model for treatment strategy in the chemotherapy of AIDS. Bull. Math. Biol. 58(1), 367–390 (1996)CrossRefMATH
41.
Zurück zum Zitat D. Kirschner, G.F. Webb, Understanding drug resistance for monotherapy treatment of HIV infection. Bull. Math. Biol. 59(4), 763–785 (1997)CrossRefMATH D. Kirschner, G.F. Webb, Understanding drug resistance for monotherapy treatment of HIV infection. Bull. Math. Biol. 59(4), 763–785 (1997)CrossRefMATH
42.
Zurück zum Zitat D. Kirschner, G.F. Webb, Immunotherapy of HIV-1 infection, J. Biol. Syst. 6(1), 71–83 (1998)CrossRefMATH D. Kirschner, G.F. Webb, Immunotherapy of HIV-1 infection, J. Biol. Syst. 6(1), 71–83 (1998)CrossRefMATH
43.
44.
45.
Zurück zum Zitat P.E. Kloeden, Pitchfork and transcritical bifurcations in systems with homogenous nonlinearities and an almost periodic time coefficient. Commun. Pure Appl. Anal. 1(4), 1–14 (2002)MathSciNet P.E. Kloeden, Pitchfork and transcritical bifurcations in systems with homogenous nonlinearities and an almost periodic time coefficient. Commun. Pure Appl. Anal. 1(4), 1–14 (2002)MathSciNet
48.
Zurück zum Zitat P.E. Kloeden, V. Kozyakin, The dynamics of epidemiological systems with nonautonomous and random coefficients. Math. Eng. Sci. Aerosp. 2(2), 105–118 (2011) P.E. Kloeden, V. Kozyakin, The dynamics of epidemiological systems with nonautonomous and random coefficients. Math. Eng. Sci. Aerosp. 2(2), 105–118 (2011)
49.
Zurück zum Zitat P.E. Kloeden, V. Kozyakin, Asymptotic behaviour of random Markov chains with tridiagonal generators. Bull. Aust. Math. Soc. 87, 27–36 (2013)CrossRefMATHMathSciNet P.E. Kloeden, V. Kozyakin, Asymptotic behaviour of random Markov chains with tridiagonal generators. Bull. Aust. Math. Soc. 87, 27–36 (2013)CrossRefMATHMathSciNet
50.
Zurück zum Zitat P.E. Kloeden, V. Kozyakin, Asymptotic behaviour of random tridiagonal Markov chains in biological applications. Discrete Contin. Dyn. Syst. Ser. B 18(2), 453–466 (2013)CrossRefMATHMathSciNet P.E. Kloeden, V. Kozyakin, Asymptotic behaviour of random tridiagonal Markov chains in biological applications. Discrete Contin. Dyn. Syst. Ser. B 18(2), 453–466 (2013)CrossRefMATHMathSciNet
51.
Zurück zum Zitat P.E. Kloeden, C. Pötzsche, Nonautonomous Bifurcation Scenarios in SIR Models, Manuscript (2013) P.E. Kloeden, C. Pötzsche, Nonautonomous Bifurcation Scenarios in SIR Models, Manuscript (2013)
52.
Zurück zum Zitat P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems (AMS, Providence, 2011)MATH P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems (AMS, Providence, 2011)MATH
53.
Zurück zum Zitat P.E. Kloeden, S. Siegmund, Bifurcations and continuous transitions of attractors in autonomous and nonautonomous systems. Int. J. Bifurcat. Chaos 5(2), 1–21 (2005) P.E. Kloeden, S. Siegmund, Bifurcations and continuous transitions of attractors in autonomous and nonautonomous systems. Int. J. Bifurcat. Chaos 5(2), 1–21 (2005)
54.
Zurück zum Zitat P.E. Kloeden, C. Pötzsche, M. Rasmussen, Discrete-time nonautonomous dynamical systems, in Stability and Bifurcation in Non-Autonomous Differential Equations, ed. by R. Johnson, M.P. Pera. Lecture Notes in Mathematics, vol. 2065 (Springer, Berlin, 2012) P.E. Kloeden, C. Pötzsche, M. Rasmussen, Discrete-time nonautonomous dynamical systems, in Stability and Bifurcation in Non-Autonomous Differential Equations, ed. by R. Johnson, M.P. Pera. Lecture Notes in Mathematics, vol. 2065 (Springer, Berlin, 2012)
55.
Zurück zum Zitat M.Y. Li, J.R. Graef, L. Wang, J. Karsai, Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160, 191–213 (1999)CrossRefMATHMathSciNet M.Y. Li, J.R. Graef, L. Wang, J. Karsai, Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160, 191–213 (1999)CrossRefMATHMathSciNet
56.
Zurück zum Zitat R.M. Lopez, B.R. Morin, S.K. Suslov, Logistic models with time-dependent coefficients and some of their applications (2011, preprint) R.M. Lopez, B.R. Morin, S.K. Suslov, Logistic models with time-dependent coefficients and some of their applications (2011, preprint)
57.
Zurück zum Zitat A. Makroglou, J. Li, Y.K. Kuang, Mathematical models and software tools for the glucose-insulin regulatory system and diabeties: an overview. Appl. Numer. Math. 56, 559–573 (2006)CrossRefMATHMathSciNet A. Makroglou, J. Li, Y.K. Kuang, Mathematical models and software tools for the glucose-insulin regulatory system and diabeties: an overview. Appl. Numer. Math. 56, 559–573 (2006)CrossRefMATHMathSciNet
58.
Zurück zum Zitat S. Michelson, B.E. Miller, A.S. Glicksmann, J. Leith, Tumor micro-ecology and competitive interactions. J. Theor. Biol. 128, 233–246 (1987)CrossRef S. Michelson, B.E. Miller, A.S. Glicksmann, J. Leith, Tumor micro-ecology and competitive interactions. J. Theor. Biol. 128, 233–246 (1987)CrossRef
59.
Zurück zum Zitat S. Mohamad, K. Gopalsamy, Neuronal dynamics in the time varying environments: continuous and discrete time models. Discrete Contin. Dyn. Syst. 6(4), 841–860 (2000)CrossRefMATHMathSciNet S. Mohamad, K. Gopalsamy, Neuronal dynamics in the time varying environments: continuous and discrete time models. Discrete Contin. Dyn. Syst. 6(4), 841–860 (2000)CrossRefMATHMathSciNet
60.
62.
Zurück zum Zitat J.D. Murray, Mathematical Biology: I. An Introduction. Interdisciplinary Applied Mathematics, vol. 17, 3rd edn. (Springer, Berlin, 2001) J.D. Murray, Mathematical Biology: I. An Introduction. Interdisciplinary Applied Mathematics, vol. 17, 3rd edn. (Springer, Berlin, 2001)
63.
Zurück zum Zitat C. Núñez, R. Obaya, A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete Contin. Dyn. Syst. Ser. B 9(3–4), 701–730 (2008)MATHMathSciNet C. Núñez, R. Obaya, A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete Contin. Dyn. Syst. Ser. B 9(3–4), 701–730 (2008)MATHMathSciNet
65.
Zurück zum Zitat P. Palumbo, W. Clausen, S. Panunzi, A. De Gaetano, Linear periodic models of subcutaneous insulin absorption. HERMIS 6, 60–79 (2005) P. Palumbo, W. Clausen, S. Panunzi, A. De Gaetano, Linear periodic models of subcutaneous insulin absorption. HERMIS 6, 60–79 (2005)
66.
Zurück zum Zitat C. Pötzsche, Exponential dichotomies of linear dynamic equations on measure chains under slowly varying coefficients, J. Math. Anal. Appl. 289, 317–335 (2004)CrossRefMATHMathSciNet C. Pötzsche, Exponential dichotomies of linear dynamic equations on measure chains under slowly varying coefficients, J. Math. Anal. Appl. 289, 317–335 (2004)CrossRefMATHMathSciNet
67.
Zurück zum Zitat C. Pötzsche, Robustness of hyperbolic solutions under parametric perturbations. J. Differ. Equ. Appl. 15(8–9), 803–819 (2009)CrossRefMATH C. Pötzsche, Robustness of hyperbolic solutions under parametric perturbations. J. Differ. Equ. Appl. 15(8–9), 803–819 (2009)CrossRefMATH
68.
Zurück zum Zitat C. Pötzsche, Nonautonomous bifurcation of bounded solutions I: a Lyapunov-Schmidt approach. Discrete Contin. Dyn. Syst. Ser. B 14(2), 739–776 (2010)CrossRefMATHMathSciNet C. Pötzsche, Nonautonomous bifurcation of bounded solutions I: a Lyapunov-Schmidt approach. Discrete Contin. Dyn. Syst. Ser. B 14(2), 739–776 (2010)CrossRefMATHMathSciNet
69.
Zurück zum Zitat C. Pötzsche, Nonautonomous bifurcation of bounded solutions II: a shovel bifurcation pattern. Discrete Contin. Dyn. Syst. Ser. A 31(1), 941–973 (2011)CrossRefMATH C. Pötzsche, Nonautonomous bifurcation of bounded solutions II: a shovel bifurcation pattern. Discrete Contin. Dyn. Syst. Ser. A 31(1), 941–973 (2011)CrossRefMATH
71.
Zurück zum Zitat C. Pötzsche, Bifurcations in nonautonomous dynamical systems: Results and tools in discrete time, in Proceedings of the Workshop on “Future Directions in Difference Equations”, Vigo, Spain, 2011, ed. by E. Liz. Colección Congresos, no. 69, Servizo de Publicacións de Universidade de Vigo, 13–17 June 2011, pp. 163–212 C. Pötzsche, Bifurcations in nonautonomous dynamical systems: Results and tools in discrete time, in Proceedings of the Workshop on “Future Directions in Difference Equations”, Vigo, Spain, 2011, ed. by E. Liz. Colección Congresos, no. 69, Servizo de Publicacións de Universidade de Vigo, 13–17 June 2011, pp. 163–212
72.
Zurück zum Zitat C. Pötzsche, M. Rasmussen, Taylor approximation of integral manifolds. J. Dyn. Differ. Equ. 18(2), 427–460 (2006)CrossRefMATH C. Pötzsche, M. Rasmussen, Taylor approximation of integral manifolds. J. Dyn. Differ. Equ. 18(2), 427–460 (2006)CrossRefMATH
73.
Zurück zum Zitat M. Rasmussen, Towards a bifurcation theory for nonautonomous difference equation. J. Differ. Equ. Appl. 12(3–4), 297–312 (2006)CrossRefMATHMathSciNet M. Rasmussen, Towards a bifurcation theory for nonautonomous difference equation. J. Differ. Equ. Appl. 12(3–4), 297–312 (2006)CrossRefMATHMathSciNet
74.
Zurück zum Zitat M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems. Lecture Notes in Mathematics, vol. 1907 (Springer, Berlin, 2007) M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems. Lecture Notes in Mathematics, vol. 1907 (Springer, Berlin, 2007)
75.
Zurück zum Zitat M. Rasmussen, Nonautonomous bifurcation patterns for one-dimensional differential equations. J. Differ. Equ. 234, 267–288 (2007)CrossRefMATHMathSciNet M. Rasmussen, Nonautonomous bifurcation patterns for one-dimensional differential equations. J. Differ. Equ. 234, 267–288 (2007)CrossRefMATHMathSciNet
76.
Zurück zum Zitat R.K. Sachs, L.R. Hlatky, P. Hahnfeldt, Simple ODE models of tumor growth and anti-angiogenic or radiation treatment. Math. Comput. Model. 33, 1297–1305 (2001)CrossRefMATHMathSciNet R.K. Sachs, L.R. Hlatky, P. Hahnfeldt, Simple ODE models of tumor growth and anti-angiogenic or radiation treatment. Math. Comput. Model. 33, 1297–1305 (2001)CrossRefMATHMathSciNet
78.
Zurück zum Zitat W.M. Schaffer, T.V. Bronnikova, Parametric dependence in model epidemics. I: contact-related parameters. J. Biol. Dyn. 1(2), 183–195 (2007)MATHMathSciNet W.M. Schaffer, T.V. Bronnikova, Parametric dependence in model epidemics. I: contact-related parameters. J. Biol. Dyn. 1(2), 183–195 (2007)MATHMathSciNet
79.
Zurück zum Zitat G.R. Sell, Topological Dynamics and Differential Equations (Van Nostrand Reinhold, London, 1971)MATH G.R. Sell, Topological Dynamics and Differential Equations (Van Nostrand Reinhold, London, 1971)MATH
80.
81.
82.
Zurück zum Zitat M. Simeoni, et al, Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 64, 1094–1101 (2004)CrossRef M. Simeoni, et al, Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 64, 1094–1101 (2004)CrossRef
83.
Zurück zum Zitat W. Shen, Y. Yi, Almost Automorphic and Almost Periodic Dynamics in Skew-product Semiflows. Memoirs of the AMS, vol. 647 (AMS, Providence, 1998) W. Shen, Y. Yi, Almost Automorphic and Almost Periodic Dynamics in Skew-product Semiflows. Memoirs of the AMS, vol. 647 (AMS, Providence, 1998)
84.
Zurück zum Zitat E.D. Sontag, Mathematical Control Theory. Texts in Applied Mathematics, vol. 6, 2nd edn. (Springer, New York, 1998) E.D. Sontag, Mathematical Control Theory. Texts in Applied Mathematics, vol. 6, 2nd edn. (Springer, New York, 1998)
85.
Zurück zum Zitat E.D. Sontag, Some new directions in control theory inspired by systems biology. Syst. Biol. 1(1), 9–18 (2004)CrossRef E.D. Sontag, Some new directions in control theory inspired by systems biology. Syst. Biol. 1(1), 9–18 (2004)CrossRef
87.
Zurück zum Zitat H.R. Thieme, Uniform weak implies uniform strong persistence for non-autonomous semiflows. Proc. Am. Math. Soc. 127(8), 2395–2403 (1999)CrossRefMATHMathSciNet H.R. Thieme, Uniform weak implies uniform strong persistence for non-autonomous semiflows. Proc. Am. Math. Soc. 127(8), 2395–2403 (1999)CrossRefMATHMathSciNet
88.
Zurück zum Zitat H.R. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology. Math. Biosci. 166, 173–201 (2000)CrossRefMATHMathSciNet H.R. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology. Math. Biosci. 166, 173–201 (2000)CrossRefMATHMathSciNet
90.
Zurück zum Zitat H. Wang, J. Li, Y.K. Kuang, Mathematical modeling and qualitative analysis of insulin therapies. Math. Biosci. 210, 17–33 (2007)CrossRefMATHMathSciNet H. Wang, J. Li, Y.K. Kuang, Mathematical modeling and qualitative analysis of insulin therapies. Math. Biosci. 210, 17–33 (2007)CrossRefMATHMathSciNet
92.
Zurück zum Zitat X.-Q. Zhao, Persistence in almost periodic predator-prey reaction-diffusion equations, in Dynamical Systems and their Application in Biology, ed. by S. Ruan, G.S.K. Wolkowicz, J. Wu. Fields Institute Communications (AMS, Providence, 2003), pp. 259–268 X.-Q. Zhao, Persistence in almost periodic predator-prey reaction-diffusion equations, in Dynamical Systems and their Application in Biology, ed. by S. Ruan, G.S.K. Wolkowicz, J. Wu. Fields Institute Communications (AMS, Providence, 2003), pp. 259–268
93.
Zurück zum Zitat M. Zhien, B. Song, T.G. Hallam, The threshold of survival for systems in a fluctuating environment. Bull. Math. Biol. 53(3), 311–323 (1989) M. Zhien, B. Song, T.G. Hallam, The threshold of survival for systems in a fluctuating environment. Bull. Math. Biol. 53(3), 311–323 (1989)
Metadaten
Titel
Nonautonomous Dynamical Systems in the Life Sciences
verfasst von
Peter E. Kloeden
Christian Pötzsche
Copyright-Jahr
2013
DOI
https://doi.org/10.1007/978-3-319-03080-7_1