Skip to main content

2015 | OriginalPaper | Buchkapitel

8. Noncontact Atomic Force Microscopy for Atomic-Scale Characterization of Material Surfaces

verfasst von : Mehmet Z. Baykara

Erschienen in: Surface Science Tools for Nanomaterials Characterization

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Among the large variety of scanning probe microscopy techniques, noncontact atomic force microscopy (NC-AFM) stands out with its capability of atomic-resolution imaging and spectroscopy measurements on conducting, semiconducting as well as insulating sample surfaces. In this chapter, we review the fundamental experimental and instrumental methodology associated with the technique and present key results obtained on different classes of material surfaces. In addition to atomic-resolution imaging, the use of NC-AFM towards the goal of atomic-resolution force spectroscopy is emphasized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55(6):726–735 Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55(6):726–735
2.
Zurück zum Zitat Binnig G, Rohrer H, Gerber C, Weibel E (1983) 7x7 Reconstruction on Si(111) resolved in real space. Phys Rev Lett 50(2):120–123CrossRef Binnig G, Rohrer H, Gerber C, Weibel E (1983) 7x7 Reconstruction on Si(111) resolved in real space. Phys Rev Lett 50(2):120–123CrossRef
3.
Zurück zum Zitat Chen CJ (2007) Introduction to scanning tunneling microscopy. Oxford University Press, OxfordCrossRef Chen CJ (2007) Introduction to scanning tunneling microscopy. Oxford University Press, OxfordCrossRef
4.
Zurück zum Zitat Bonnell DA, Basov DN, Bode M, Diebold U, Kalinin SV, Madhavan V, Novotny L, Salmeron M, Schwarz UD, Weiss PS (2012) Imaging physical phenomena with local probes: from electrons to photons. Rev Mod Phys 84(3):1343CrossRef Bonnell DA, Basov DN, Bode M, Diebold U, Kalinin SV, Madhavan V, Novotny L, Salmeron M, Schwarz UD, Weiss PS (2012) Imaging physical phenomena with local probes: from electrons to photons. Rev Mod Phys 84(3):1343CrossRef
5.
Zurück zum Zitat Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933CrossRef Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933CrossRef
6.
Zurück zum Zitat Albrecht TR, Quate CF (1988) Atomic resolution with the atomic force microscope on conductors and nonconductors. J Vac Sci Technol Vac Surf Films 6(2):271–274CrossRef Albrecht TR, Quate CF (1988) Atomic resolution with the atomic force microscope on conductors and nonconductors. J Vac Sci Technol Vac Surf Films 6(2):271–274CrossRef
7.
Zurück zum Zitat Albrecht TR, Akamine S, Carver TE, Quate CF (1990) Microfabrication of cantilever styli for the atomic force microscope. J Vac Sci Technol-Vac Surf Films 8(4):3386–3396CrossRef Albrecht TR, Akamine S, Carver TE, Quate CF (1990) Microfabrication of cantilever styli for the atomic force microscope. J Vac Sci Technol-Vac Surf Films 8(4):3386–3396CrossRef
8.
Zurück zum Zitat Akamine S, Barrett RC, Quate CF (1990) Improved atomic force microscope images using microcantilevers with sharp tips. Appl Phys Lett 57(3):316–318CrossRef Akamine S, Barrett RC, Quate CF (1990) Improved atomic force microscope images using microcantilevers with sharp tips. Appl Phys Lett 57(3):316–318CrossRef
9.
Zurück zum Zitat Wolter O, Bayer T, Greschner J (1991) Micromachined silicon sensors for scanning force microscopy. J Vac Sci Technol B 9(2):1353–1357CrossRef Wolter O, Bayer T, Greschner J (1991) Micromachined silicon sensors for scanning force microscopy. J Vac Sci Technol B 9(2):1353–1357CrossRef
10.
Zurück zum Zitat Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53(12):1045–1047CrossRef Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53(12):1045–1047CrossRef
11.
Zurück zum Zitat Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Longmire M, Gurley J (1989) An atomic-resolution atomic-force microscope implemented using an optical-lever. J Appl Phys 65(1):164–167CrossRef Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Longmire M, Gurley J (1989) An atomic-resolution atomic-force microscope implemented using an optical-lever. J Appl Phys 65(1):164–167CrossRef
12.
Zurück zum Zitat Rugar D, Mamin HJ, Guethner P (1989) Improved fiber-optic interferometer for atomic force microscopy. Appl Phys Lett 55(25):2588–2590CrossRef Rugar D, Mamin HJ, Guethner P (1989) Improved fiber-optic interferometer for atomic force microscopy. Appl Phys Lett 55(25):2588–2590CrossRef
13.
Zurück zum Zitat Moser A, Hug HJ, Jung T, Schwarz UD, Guntherodt HJ (1993) A miniature fiber optic force microscope scan head. Meas Sci Technol 4(7):769–775CrossRef Moser A, Hug HJ, Jung T, Schwarz UD, Guntherodt HJ (1993) A miniature fiber optic force microscope scan head. Meas Sci Technol 4(7):769–775CrossRef
14.
Zurück zum Zitat Binnig G, Gerber C, Stoll E, Albrecht TR, Quate CF (1987) Atomic resolution with atomic force microscope. Europhys Lett 3(12):1281–1286CrossRef Binnig G, Gerber C, Stoll E, Albrecht TR, Quate CF (1987) Atomic resolution with atomic force microscope. Europhys Lett 3(12):1281–1286CrossRef
15.
Zurück zum Zitat Meyer G, Amer NM (1990) Optical-beam-deflection atomic force microscopy – the nacl (001) surface. Appl Phys Lett 56(21):2100–2101CrossRef Meyer G, Amer NM (1990) Optical-beam-deflection atomic force microscopy – the nacl (001) surface. Appl Phys Lett 56(21):2100–2101CrossRef
16.
Zurück zum Zitat Marti O, Colchero J, Mlynek J (1993) Friction and forces on an atomic-scale. Nanosour Manip Atoms Under High Fields Temp Appl 235:253–269CrossRef Marti O, Colchero J, Mlynek J (1993) Friction and forces on an atomic-scale. Nanosour Manip Atoms Under High Fields Temp Appl 235:253–269CrossRef
17.
Zurück zum Zitat Meyer G, Amer NM (1990) Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl Phys Lett 57(20):2089–2091CrossRef Meyer G, Amer NM (1990) Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl Phys Lett 57(20):2089–2091CrossRef
18.
Zurück zum Zitat Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59(17):1942–1945CrossRef Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59(17):1942–1945CrossRef
19.
Zurück zum Zitat Eaton PJ, West P (2010) Atomic force microscopy. Oxford University Press, OxfordCrossRef Eaton PJ, West P (2010) Atomic force microscopy. Oxford University Press, OxfordCrossRef
20.
Zurück zum Zitat Giessibl FJ, Binnig G (1992) Investigation of the (001) cleavage plane of potassium-bromide with an atomic force microscope at 4.2-k in ultra-high vacuum. Ultramicroscopy 42:281–289CrossRef Giessibl FJ, Binnig G (1992) Investigation of the (001) cleavage plane of potassium-bromide with an atomic force microscope at 4.2-k in ultra-high vacuum. Ultramicroscopy 42:281–289CrossRef
21.
Zurück zum Zitat Ohnesorge F, Binnig G (1993) True atomic-resolution by atomic force microscopy through repulsive and attractive forces. Science 260(5113):1451–1456CrossRef Ohnesorge F, Binnig G (1993) True atomic-resolution by atomic force microscopy through repulsive and attractive forces. Science 260(5113):1451–1456CrossRef
22.
Zurück zum Zitat Baykara MZ, Schwendemann TC, Altman EI, Schwarz UD (2010) Three-dimensional atomic force microscopy – taking surface imaging to the next level. Adv Mater 22(26–27):2838–2853CrossRef Baykara MZ, Schwendemann TC, Altman EI, Schwarz UD (2010) Three-dimensional atomic force microscopy – taking surface imaging to the next level. Adv Mater 22(26–27):2838–2853CrossRef
23.
Zurück zum Zitat Giessibl FJ (1995) Atomic-resolution of the silicon (111)-(7x7) surface by atomic-force microscopy. Science 267(5194):68–71CrossRef Giessibl FJ (1995) Atomic-resolution of the silicon (111)-(7x7) surface by atomic-force microscopy. Science 267(5194):68–71CrossRef
24.
Zurück zum Zitat Sugawara Y, Ohta M, Ueyama H, Morita S (1995) Defect motion on an InP(110) surface observed with noncontact atomic-force microscopy. Science 270(5242):1646–1648CrossRef Sugawara Y, Ohta M, Ueyama H, Morita S (1995) Defect motion on an InP(110) surface observed with noncontact atomic-force microscopy. Science 270(5242):1646–1648CrossRef
25.
Zurück zum Zitat Kitamura S, Iwatsuki M (1995) Observation of 7x7 reconstructed structure on the silicon (111) surface using ultrahigh-vacuum noncontact atomic-force microscopy. Jpn J Appl Phys Part 2 Lett 34(1B):L145–L148CrossRef Kitamura S, Iwatsuki M (1995) Observation of 7x7 reconstructed structure on the silicon (111) surface using ultrahigh-vacuum noncontact atomic-force microscopy. Jpn J Appl Phys Part 2 Lett 34(1B):L145–L148CrossRef
26.
Zurück zum Zitat Ueyama H, Ohta M, Sugawara Y, Morita S (1995) Atomically resolved InP(110) surface observed with noncontact ultrahigh-vacuum atomic-force microscope. Jpn J Appl Phys Part 2 Lett 34(8B):L1086–L1088CrossRef Ueyama H, Ohta M, Sugawara Y, Morita S (1995) Atomically resolved InP(110) surface observed with noncontact ultrahigh-vacuum atomic-force microscope. Jpn J Appl Phys Part 2 Lett 34(8B):L1086–L1088CrossRef
27.
Zurück zum Zitat Morita S, Wiesendanger R, Meyer E (2002) Noncontact atomic force microscopy. Springer, BerlinCrossRef Morita S, Wiesendanger R, Meyer E (2002) Noncontact atomic force microscopy. Springer, BerlinCrossRef
28.
Zurück zum Zitat Morita S, Giessibl FJ, Wiesendanger R (2009) Noncontact atomic force microscopy, vol 2. Springer, BerlinCrossRef Morita S, Giessibl FJ, Wiesendanger R (2009) Noncontact atomic force microscopy, vol 2. Springer, BerlinCrossRef
29.
Zurück zum Zitat Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6–8):197–301CrossRef Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6–8):197–301CrossRef
30.
Zurück zum Zitat Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75(3):949–983CrossRef Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75(3):949–983CrossRef
31.
Zurück zum Zitat Hofer WA, Foster AS, Shluger AL (2003) Theories of scanning probe microscopes at the atomic scale. Rev Mod Phys 75(4):1287–1331CrossRef Hofer WA, Foster AS, Shluger AL (2003) Theories of scanning probe microscopes at the atomic scale. Rev Mod Phys 75(4):1287–1331CrossRef
32.
Zurück zum Zitat Barth C, Foster AS, Henry CR, Shluger AL (2011) Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv Mater 23(4):477–501CrossRef Barth C, Foster AS, Henry CR, Shluger AL (2011) Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv Mater 23(4):477–501CrossRef
33.
Zurück zum Zitat Morita S (2013) Atomically resolved force microscopy. J Vac Sci Technol A 31(5):050802CrossRef Morita S (2013) Atomically resolved force microscopy. J Vac Sci Technol A 31(5):050802CrossRef
34.
Zurück zum Zitat Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency-modulation detection using high-q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69(2):668–673CrossRef Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency-modulation detection using high-q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69(2):668–673CrossRef
35.
Zurück zum Zitat Yokoyama K, Ochi T, Yoshimoto A, Sugawara Y, Morita S (2000) Atomic resolution imaging on Si(100)2x1 and Si(100)2x1: H surfaces with noncontact atomic force microscopy. Japanese J Appl Phys Part 2 Lett 39(2A):L113–L115CrossRef Yokoyama K, Ochi T, Yoshimoto A, Sugawara Y, Morita S (2000) Atomic resolution imaging on Si(100)2x1 and Si(100)2x1: H surfaces with noncontact atomic force microscopy. Japanese J Appl Phys Part 2 Lett 39(2A):L113–L115CrossRef
36.
Zurück zum Zitat Schwarz A, Allers W, Schwarz UD, Wiesendanger R (2000) Dynamic-mode scanning force microscopy study of n-InAs(110)-(1x1) at low temperatures. Phys Rev B 61(4):2837–2845CrossRef Schwarz A, Allers W, Schwarz UD, Wiesendanger R (2000) Dynamic-mode scanning force microscopy study of n-InAs(110)-(1x1) at low temperatures. Phys Rev B 61(4):2837–2845CrossRef
37.
Zurück zum Zitat Kitamura S, Iwatsuki M (1996) Observation of silicon surfaces using ultrahigh-vacuum noncontact, atomic force microscopy. Jpn J Appl Phys Part 2-Lett 35(5B):L668–L671CrossRef Kitamura S, Iwatsuki M (1996) Observation of silicon surfaces using ultrahigh-vacuum noncontact, atomic force microscopy. Jpn J Appl Phys Part 2-Lett 35(5B):L668–L671CrossRef
38.
Zurück zum Zitat Sugawara Y, Uchihashi T, Abe M, Morita S (1999) True atomic resolution imaging of surface structure and surface charge on the GaAs(110). Appl Surf Sci 140(3–4):371–375CrossRef Sugawara Y, Uchihashi T, Abe M, Morita S (1999) True atomic resolution imaging of surface structure and surface charge on the GaAs(110). Appl Surf Sci 140(3–4):371–375CrossRef
39.
Zurück zum Zitat Sawada D, Sugimoto Y, Morita K, Abe M, Morita S (2010) Simultaneous atomic force and scanning tunneling microscopy study of the Ge(111)-c(2x8) surface. J Vac Sci Technol B 28(3):C4D1CrossRef Sawada D, Sugimoto Y, Morita K, Abe M, Morita S (2010) Simultaneous atomic force and scanning tunneling microscopy study of the Ge(111)-c(2x8) surface. J Vac Sci Technol B 28(3):C4D1CrossRef
40.
Zurück zum Zitat Yokoyama K, Ochi T, Sugawara Y, Morita S (1999) Atomically resolved silver imaging on the Si(111)-(root 3 x root 3)-Ag surface using a noncontact atomic force microscope. Phys Rev Lett 83(24):5023–5026CrossRef Yokoyama K, Ochi T, Sugawara Y, Morita S (1999) Atomically resolved silver imaging on the Si(111)-(root 3 x root 3)-Ag surface using a noncontact atomic force microscope. Phys Rev Lett 83(24):5023–5026CrossRef
41.
Zurück zum Zitat Sweetman A, Gangopadhyay S, Danza R, Berdunov N, Moriarty P (2009) qPlus atomic force microscopy of the Si(100) surface: buckled, split-off, and added dimers. Appl Phys Lett 95(6):063112CrossRef Sweetman A, Gangopadhyay S, Danza R, Berdunov N, Moriarty P (2009) qPlus atomic force microscopy of the Si(100) surface: buckled, split-off, and added dimers. Appl Phys Lett 95(6):063112CrossRef
42.
Zurück zum Zitat Sweetman A, Danza R, Gangopadhyay S, Moriarty P (2012) Imaging and manipulation of the Si(100) surface by small-amplitude NC-AFM at zero and very low applied bias. J Phys Condens Matter 24(8):084009CrossRef Sweetman A, Danza R, Gangopadhyay S, Moriarty P (2012) Imaging and manipulation of the Si(100) surface by small-amplitude NC-AFM at zero and very low applied bias. J Phys Condens Matter 24(8):084009CrossRef
43.
Zurück zum Zitat Sweetman A, Stannard A, Sugimoto Y, Abe M, Morita S, Moriarty P (2013) Simultaneous noncontact AFM and STM of Ag:Si(111)-(root 3 x root 3)R30°. Phys Rev B 87(7):075310CrossRef Sweetman A, Stannard A, Sugimoto Y, Abe M, Morita S, Moriarty P (2013) Simultaneous noncontact AFM and STM of Ag:Si(111)-(root 3 x root 3)R30°. Phys Rev B 87(7):075310CrossRef
44.
Zurück zum Zitat Li YJ, Nomura H, Ozaki N, Naitoh Y, Kageshima M, Sugawara Y, Hobbs C, Kantorovich L (2006) Origin of p(2 x 1) phase on Si(001) by noncontact atomic force microscopy at 5 k. Phys Rev Lett 96(10):106104CrossRef Li YJ, Nomura H, Ozaki N, Naitoh Y, Kageshima M, Sugawara Y, Hobbs C, Kantorovich L (2006) Origin of p(2 x 1) phase on Si(001) by noncontact atomic force microscopy at 5 k. Phys Rev Lett 96(10):106104CrossRef
45.
Zurück zum Zitat Naitoh Y, Ma ZM, Li YJ, Kageshima M, Sugawara Y (2010) Simultaneous observation of surface topography and elasticity at atomic scale by multifrequency frequency modulation atomic force microscopy. J Vac Sci Technol B 28(6):1210–1214CrossRef Naitoh Y, Ma ZM, Li YJ, Kageshima M, Sugawara Y (2010) Simultaneous observation of surface topography and elasticity at atomic scale by multifrequency frequency modulation atomic force microscopy. J Vac Sci Technol B 28(6):1210–1214CrossRef
46.
Zurück zum Zitat Minobe T, Uchihashi T, Tsukamoto T, Orisaka S, Sugawara Y, Morita S (1999) Distance dependence of noncontact-AFM image contrast on Si(111)root 3 X root 3-Ag structure. Appl Surf Sci 140(3–4):298–303CrossRef Minobe T, Uchihashi T, Tsukamoto T, Orisaka S, Sugawara Y, Morita S (1999) Distance dependence of noncontact-AFM image contrast on Si(111)root 3 X root 3-Ag structure. Appl Surf Sci 140(3–4):298–303CrossRef
47.
Zurück zum Zitat Orisaka S, Minobe T, Uchihashi T, Sugawara Y, Morita S (1999) The atomic resolution imaging of metallic Ag(111) surface by noncontact atomic force microscope. Appl Surf Sci 140(3–4):243–246CrossRef Orisaka S, Minobe T, Uchihashi T, Sugawara Y, Morita S (1999) The atomic resolution imaging of metallic Ag(111) surface by noncontact atomic force microscope. Appl Surf Sci 140(3–4):243–246CrossRef
48.
Zurück zum Zitat Loppacher C, Bammerlin M, Guggisberg M, Schar S, Bennewitz R, Baratoff A, Meyer E, Guntherodt HJ (2000) Dynamic force microscopy of copper surfaces: atomic resolution and distance dependence of tip-sample interaction and tunneling current. Phys Rev B 62(24):16944–16949CrossRef Loppacher C, Bammerlin M, Guggisberg M, Schar S, Bennewitz R, Baratoff A, Meyer E, Guntherodt HJ (2000) Dynamic force microscopy of copper surfaces: atomic resolution and distance dependence of tip-sample interaction and tunneling current. Phys Rev B 62(24):16944–16949CrossRef
49.
Zurück zum Zitat Caciuc V, Holscher H, Weiner D, Fuchs H, Schirmeisen A (2008) Noncontact atomic force microscopy imaging mechanism on Ag(110): experiment and first-principles theory. Phys Rev B 77(4):045411CrossRef Caciuc V, Holscher H, Weiner D, Fuchs H, Schirmeisen A (2008) Noncontact atomic force microscopy imaging mechanism on Ag(110): experiment and first-principles theory. Phys Rev B 77(4):045411CrossRef
50.
Zurück zum Zitat Konig T, Simon GH, Rust HP, Heyde M (2009) Atomic resolution on a metal single crystal with dynamic force microscopy. Appl Phys Lett 95(8):083116CrossRef Konig T, Simon GH, Rust HP, Heyde M (2009) Atomic resolution on a metal single crystal with dynamic force microscopy. Appl Phys Lett 95(8):083116CrossRef
51.
Zurück zum Zitat Allers W, Schwarz A, Schwarz UD, Wiesendanger R (1999) Dynamic scanning force microscopy at low temperatures on a noble-gas crystal: atomic resolution on the xenon(111) surface. Europhys Lett 48(3):276–279CrossRef Allers W, Schwarz A, Schwarz UD, Wiesendanger R (1999) Dynamic scanning force microscopy at low temperatures on a noble-gas crystal: atomic resolution on the xenon(111) surface. Europhys Lett 48(3):276–279CrossRef
52.
Zurück zum Zitat Barth C, Reichling M (2001) Imaging the atomic arrangements on the high-temperature reconstructed alpha-Al2O3(0001) surface. Nature 414(6859):54–57CrossRef Barth C, Reichling M (2001) Imaging the atomic arrangements on the high-temperature reconstructed alpha-Al2O3(0001) surface. Nature 414(6859):54–57CrossRef
53.
Zurück zum Zitat Reichling M, Barth C (1999) Scanning force imaging of atomic size defects on the CaF2(111) surface. Phys Rev Lett 83(4):768–771CrossRef Reichling M, Barth C (1999) Scanning force imaging of atomic size defects on the CaF2(111) surface. Phys Rev Lett 83(4):768–771CrossRef
54.
Zurück zum Zitat Barth C, Foster AS, Reichling M, Shluger AL (2001) Contrast formation in atomic resolution scanning force microscopy on CaF(2)(111): experiment and theory. J Phys-Condens Matter 13(10):2061–2079CrossRef Barth C, Foster AS, Reichling M, Shluger AL (2001) Contrast formation in atomic resolution scanning force microscopy on CaF(2)(111): experiment and theory. J Phys-Condens Matter 13(10):2061–2079CrossRef
55.
Zurück zum Zitat Hoffmann R, Lantz MA, Hug HJ, van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ (2003) Atomic resolution imaging and frequency versus distance measurements on NiO(001) using low-temperature scanning force microscopy. Phys Rev B 67(8):085402CrossRef Hoffmann R, Lantz MA, Hug HJ, van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ (2003) Atomic resolution imaging and frequency versus distance measurements on NiO(001) using low-temperature scanning force microscopy. Phys Rev B 67(8):085402CrossRef
56.
Zurück zum Zitat Ruschmeier K, Schirmeisen A, Hoffmann R (2009) Site-specific force-vector field studies of KBr(001) by atomic force microscopy. Nanotechnology 20(26):264013CrossRef Ruschmeier K, Schirmeisen A, Hoffmann R (2009) Site-specific force-vector field studies of KBr(001) by atomic force microscopy. Nanotechnology 20(26):264013CrossRef
57.
Zurück zum Zitat Gritschneder S, Namai Y, Iwasawa Y, Reichling M (2005) Structural features of CeO2(111) revealed by dynamic SFM. Nanotechnology 16(3):S41–S48CrossRef Gritschneder S, Namai Y, Iwasawa Y, Reichling M (2005) Structural features of CeO2(111) revealed by dynamic SFM. Nanotechnology 16(3):S41–S48CrossRef
58.
Zurück zum Zitat Ostendorf F, Torbrugge S, Reichling M (2008) Atomic scale evidence for faceting stabilization of a polar oxide surface. Phys Rev B 77(4):041405CrossRef Ostendorf F, Torbrugge S, Reichling M (2008) Atomic scale evidence for faceting stabilization of a polar oxide surface. Phys Rev B 77(4):041405CrossRef
59.
Zurück zum Zitat Rasmussen MK, Foster AS, Canova FF, Hinnemann B, Helveg S, Meinander K, Besenbacher F, Lauritsen JV (2011) Noncontact atomic force microscopy imaging of atomic structure and cation defects of the polar MgAl2O4(100) surface: experiments and first-principles simulations. Phys Rev B 84(23):235419CrossRef Rasmussen MK, Foster AS, Canova FF, Hinnemann B, Helveg S, Meinander K, Besenbacher F, Lauritsen JV (2011) Noncontact atomic force microscopy imaging of atomic structure and cation defects of the polar MgAl2O4(100) surface: experiments and first-principles simulations. Phys Rev B 84(23):235419CrossRef
60.
Zurück zum Zitat Hoffmann R, Weiner D, Schirmeisen A, Foster AS (2009) Sublattice identification in noncontact atomic force microscopy of the NaCl(001) surface. Phys Rev B 80(11):115426CrossRef Hoffmann R, Weiner D, Schirmeisen A, Foster AS (2009) Sublattice identification in noncontact atomic force microscopy of the NaCl(001) surface. Phys Rev B 80(11):115426CrossRef
61.
Zurück zum Zitat Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325(5944):1110–1114CrossRef Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325(5944):1110–1114CrossRef
62.
Zurück zum Zitat Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed WM, Jaspars M (2010) Organic structure determination using atomic-resolution scanning probe microscopy. Nat Chem 2(10):821–825CrossRef Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed WM, Jaspars M (2010) Organic structure determination using atomic-resolution scanning probe microscopy. Nat Chem 2(10):821–825CrossRef
63.
Zurück zum Zitat Meyer G, Gross L, Mahn F, Repp J (2012) Scanning probe microscopy of atoms and molecules on insulating films: from imaging to molecular manipulation. Chimia 66(1–2):10–15CrossRef Meyer G, Gross L, Mahn F, Repp J (2012) Scanning probe microscopy of atoms and molecules on insulating films: from imaging to molecular manipulation. Chimia 66(1–2):10–15CrossRef
64.
Zurück zum Zitat Mohn F, Schuler B, Gross L, Meyer G (2013) Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl Phys Lett 102(7):073109CrossRef Mohn F, Schuler B, Gross L, Meyer G (2013) Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl Phys Lett 102(7):073109CrossRef
65.
Zurück zum Zitat Gotsmann B, Anczykowski B, Seidel C, Fuchs H (1999) Determination of tip-sample interaction forces from measured dynamic force spectroscopy curves. Appl Surf Sci 140(3–4):314–319CrossRef Gotsmann B, Anczykowski B, Seidel C, Fuchs H (1999) Determination of tip-sample interaction forces from measured dynamic force spectroscopy curves. Appl Surf Sci 140(3–4):314–319CrossRef
66.
Zurück zum Zitat Durig U (1999) Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy. Appl Phys Lett 75(3):433–435CrossRef Durig U (1999) Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy. Appl Phys Lett 75(3):433–435CrossRef
67.
Zurück zum Zitat Giessibl FJ (2001) A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl Phys Lett 78(1):123–125CrossRef Giessibl FJ (2001) A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl Phys Lett 78(1):123–125CrossRef
68.
Zurück zum Zitat Sader JE, Jarvis SP (2004) Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl Phys Lett 84(10):1801–1803CrossRef Sader JE, Jarvis SP (2004) Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl Phys Lett 84(10):1801–1803CrossRef
69.
Zurück zum Zitat Giessibl FJ (1997) Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys Rev B 56(24):16010–16015CrossRef Giessibl FJ (1997) Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys Rev B 56(24):16010–16015CrossRef
70.
Zurück zum Zitat Durig U (2000) Extracting interaction forces and complementary observables in dynamic probe microscopy. Appl Phys Lett 76(9):1203–1205CrossRef Durig U (2000) Extracting interaction forces and complementary observables in dynamic probe microscopy. Appl Phys Lett 76(9):1203–1205CrossRef
71.
Zurück zum Zitat Holscher H, Schwarz A, Allers W, Schwarz UD, Wiesendanger R (2000) Quantitative analysis of dynamic-force-spectroscopy data on graphite(0001) in the contact and noncontact regimes. Phys Rev B 61(19):12678–12681CrossRef Holscher H, Schwarz A, Allers W, Schwarz UD, Wiesendanger R (2000) Quantitative analysis of dynamic-force-spectroscopy data on graphite(0001) in the contact and noncontact regimes. Phys Rev B 61(19):12678–12681CrossRef
72.
Zurück zum Zitat Gotsmann B, Fuchs H (2001) Dynamic force spectroscopy of conservative and dissipative forces in an Al-Au(111) tip-sample system. Phys Rev Lett 86(12):2597–2600CrossRef Gotsmann B, Fuchs H (2001) Dynamic force spectroscopy of conservative and dissipative forces in an Al-Au(111) tip-sample system. Phys Rev Lett 86(12):2597–2600CrossRef
73.
Zurück zum Zitat Lantz MA, Hug HJ, Hoffmann R, van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ (2001) Quantitative measurement of short-range chemical bonding forces. Science 291(5513):2580–2583CrossRef Lantz MA, Hug HJ, Hoffmann R, van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ (2001) Quantitative measurement of short-range chemical bonding forces. Science 291(5513):2580–2583CrossRef
74.
Zurück zum Zitat Hoffmann R, Kantorovich LN, Baratoff A, Hug HJ, Guntherodt HJ (2004) Sublattice identification in scanning force microscopy on alkali halide surfaces. Phys Rev Lett 92(14):146103CrossRef Hoffmann R, Kantorovich LN, Baratoff A, Hug HJ, Guntherodt HJ (2004) Sublattice identification in scanning force microscopy on alkali halide surfaces. Phys Rev Lett 92(14):146103CrossRef
75.
Zurück zum Zitat Abe M, Sugimoto Y, Custance O, Morita S (2005) Room-temperature reproducible spatial force spectroscopy using atom-tracking technique. Appl Phys Lett 87(17):173503CrossRef Abe M, Sugimoto Y, Custance O, Morita S (2005) Room-temperature reproducible spatial force spectroscopy using atom-tracking technique. Appl Phys Lett 87(17):173503CrossRef
76.
Zurück zum Zitat Sugimoto Y, Innami S, Abe M, Custance O, Morita S (2007) Dynamic force spectroscopy using cantilever higher flexural modes. Appl Phys Lett 91(9):093120CrossRef Sugimoto Y, Innami S, Abe M, Custance O, Morita S (2007) Dynamic force spectroscopy using cantilever higher flexural modes. Appl Phys Lett 91(9):093120CrossRef
77.
Zurück zum Zitat Sugimoto Y, Pou P, Abe M, Jelinek P, Perez R, Morita S, Custance O (2007) Chemical identification of individual surface atoms by atomic force microscopy. Nature 446(7131):64–67CrossRef Sugimoto Y, Pou P, Abe M, Jelinek P, Perez R, Morita S, Custance O (2007) Chemical identification of individual surface atoms by atomic force microscopy. Nature 446(7131):64–67CrossRef
78.
Zurück zum Zitat Langkat SM, Holscher H, Schwarz A, Wiesendanger R (2003) Determination of site specific interatomic forces between an iron coated tip and the NiO(001) surface by force field spectroscopy. Surf Sci 527(1–3):12–20CrossRef Langkat SM, Holscher H, Schwarz A, Wiesendanger R (2003) Determination of site specific interatomic forces between an iron coated tip and the NiO(001) surface by force field spectroscopy. Surf Sci 527(1–3):12–20CrossRef
79.
Zurück zum Zitat Schirmeisen A, Weiner D, Fuchs H (2006) Single-atom contact mechanics: from atomic scale energy barrier to mechanical relaxation hysteresis. Phys Rev Lett 97(13):136101CrossRef Schirmeisen A, Weiner D, Fuchs H (2006) Single-atom contact mechanics: from atomic scale energy barrier to mechanical relaxation hysteresis. Phys Rev Lett 97(13):136101CrossRef
80.
Zurück zum Zitat Heyde M, Simon GH, Rust HP, Freund HJ (2006) Probing adsorption sites on thin oxide films by dynamic force microscopy. Appl Phys Lett 89(26):263107CrossRef Heyde M, Simon GH, Rust HP, Freund HJ (2006) Probing adsorption sites on thin oxide films by dynamic force microscopy. Appl Phys Lett 89(26):263107CrossRef
81.
Zurück zum Zitat Ruschmeier K, Schirmeisen A, Hoffmann R (2008) Atomic-scale force-vector fields. Phys Rev Lett 101(15):156102CrossRef Ruschmeier K, Schirmeisen A, Hoffmann R (2008) Atomic-scale force-vector fields. Phys Rev Lett 101(15):156102CrossRef
82.
Zurück zum Zitat Sugimoto Y, Namikawa T, Miki K, Abe M, Morita S (2008) Vertical and lateral force mapping on the Si(111)-(7x7) surface by dynamic force microscopy. Phys Rev B 77(19):195424CrossRef Sugimoto Y, Namikawa T, Miki K, Abe M, Morita S (2008) Vertical and lateral force mapping on the Si(111)-(7x7) surface by dynamic force microscopy. Phys Rev B 77(19):195424CrossRef
83.
Zurück zum Zitat Ashino M, Obergfell D, Haluska M, Yang SH, Khlobystov AN, Roth S, Wiesendanger R (2008) Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nat Nanotechnol 3(6):337–341CrossRef Ashino M, Obergfell D, Haluska M, Yang SH, Khlobystov AN, Roth S, Wiesendanger R (2008) Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nat Nanotechnol 3(6):337–341CrossRef
84.
Zurück zum Zitat Albers BJ, Schwendemann TC, Baykara MZ, Pilet N, Liebmann M, Altman EI, Schwarz UD (2009) Three-dimensional imaging of short-range chemical forces with picometre resolution. Nat Nanotechnol 4(5):307–310CrossRef Albers BJ, Schwendemann TC, Baykara MZ, Pilet N, Liebmann M, Altman EI, Schwarz UD (2009) Three-dimensional imaging of short-range chemical forces with picometre resolution. Nat Nanotechnol 4(5):307–310CrossRef
85.
Zurück zum Zitat Baykara MZ, Schwendemann TC, Albers BJ, Pilet N, Monig H, Altman EI, Schwarz UD (2012) Exploring atomic-scale lateral forces in the attractive regime: a case study on graphite (0001). Nanotechnology 23(40):405703CrossRef Baykara MZ, Schwendemann TC, Albers BJ, Pilet N, Monig H, Altman EI, Schwarz UD (2012) Exploring atomic-scale lateral forces in the attractive regime: a case study on graphite (0001). Nanotechnology 23(40):405703CrossRef
86.
Zurück zum Zitat Baykara MZ, Todorovic M, Monig H, Schwendemann TC, Unverdi O, Rodrigo L, Altman EI, Perez R, Schwarz UD (2013) Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements. Phys Rev B 87(15):155414CrossRef Baykara MZ, Todorovic M, Monig H, Schwendemann TC, Unverdi O, Rodrigo L, Altman EI, Perez R, Schwarz UD (2013) Atom-specific forces and defect identification on surface-oxidized Cu(100) with combined 3D-AFM and STM measurements. Phys Rev B 87(15):155414CrossRef
87.
Zurück zum Zitat Fremy S, Kawai S, Pawlak R, Glatzel T, Baratoff A, Meyer E (2012) Three-dimensional dynamic force spectroscopy measurements on KBr(001): atomic deformations at small tip-sample separations. Nanotechnology 23(5):055401CrossRef Fremy S, Kawai S, Pawlak R, Glatzel T, Baratoff A, Meyer E (2012) Three-dimensional dynamic force spectroscopy measurements on KBr(001): atomic deformations at small tip-sample separations. Nanotechnology 23(5):055401CrossRef
88.
Zurück zum Zitat Baykara MZ, Dagdeviren OE, Schwendemann TC, Monig H, Altman EI, Schwarz UD (2012) Probing three-dimensional surface force fields with atomic resolution: measurement strategies, limitations, and artifact reduction. Beilstein J Nanotechnol 3:637–650CrossRef Baykara MZ, Dagdeviren OE, Schwendemann TC, Monig H, Altman EI, Schwarz UD (2012) Probing three-dimensional surface force fields with atomic resolution: measurement strategies, limitations, and artifact reduction. Beilstein J Nanotechnol 3:637–650CrossRef
89.
Zurück zum Zitat Pethica JB (1986) Interatomic forces in scanning tunneling microscopy – giant corrugations of the graphite surface – comment. Phys Rev Lett 57(25):3235CrossRef Pethica JB (1986) Interatomic forces in scanning tunneling microscopy – giant corrugations of the graphite surface – comment. Phys Rev Lett 57(25):3235CrossRef
90.
Zurück zum Zitat Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope force mapping and profiling on a sub 100-a scale. J Appl Phys 61(10):4723–4729CrossRef Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope force mapping and profiling on a sub 100-a scale. J Appl Phys 61(10):4723–4729CrossRef
91.
Zurück zum Zitat Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer silica fiber surface studied by tapping mode atomic-force microscopy. Surf Sci 290(1–2):L688–L692 Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer silica fiber surface studied by tapping mode atomic-force microscopy. Surf Sci 290(1–2):L688–L692
92.
Zurück zum Zitat Castro García R (2010) Amplitude modulation atomic force microscopy. Wiley-VCH, WeinheimCrossRef Castro García R (2010) Amplitude modulation atomic force microscopy. Wiley-VCH, WeinheimCrossRef
93.
Zurück zum Zitat Erlandsson R, Olsson L, Martensson P (1996) Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7x7. Phys Rev B 54(12):R8309–R8312CrossRef Erlandsson R, Olsson L, Martensson P (1996) Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7x7. Phys Rev B 54(12):R8309–R8312CrossRef
94.
Zurück zum Zitat Israelachvili JN (2011) Intermolecular and surface forces. Academic, Burlington Israelachvili JN (2011) Intermolecular and surface forces. Academic, Burlington
95.
Zurück zum Zitat Moll N, Gross L, Mohn F, Curioni A, Meyer G (2010) The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New J Phys 12(12):125020CrossRef Moll N, Gross L, Mohn F, Curioni A, Meyer G (2010) The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New J Phys 12(12):125020CrossRef
96.
Zurück zum Zitat Fukui K, Onishi H, Iwasawa Y (1997) Atom-resolved image of the TiO2(110) surface by noncontact atomic force microscopy. Phys Rev Lett 79(21):4202–4205CrossRef Fukui K, Onishi H, Iwasawa Y (1997) Atom-resolved image of the TiO2(110) surface by noncontact atomic force microscopy. Phys Rev Lett 79(21):4202–4205CrossRef
97.
Zurück zum Zitat Allers W, Schwarz A, Schwarz UD, Wiesendanger R (1999) Dynamic scanning force microscopy at low temperatures on a van der Waals surface: graphite (0001). Appl Surf Sci 140(3–4):247–252CrossRef Allers W, Schwarz A, Schwarz UD, Wiesendanger R (1999) Dynamic scanning force microscopy at low temperatures on a van der Waals surface: graphite (0001). Appl Surf Sci 140(3–4):247–252CrossRef
98.
Zurück zum Zitat Giessibl FJ (2000) Atomic resolution on Si(111)-(7x7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl Phys Lett 76(11):1470–1472CrossRef Giessibl FJ (2000) Atomic resolution on Si(111)-(7x7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl Phys Lett 76(11):1470–1472CrossRef
99.
Zurück zum Zitat Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Subatomic features on the silicon (111)-(7x7) surface observed by atomic force microscopy. Science 289(5478):422–425CrossRef Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Subatomic features on the silicon (111)-(7x7) surface observed by atomic force microscopy. Science 289(5478):422–425CrossRef
100.
Zurück zum Zitat Giessibl FJ, Hembacher S, Herz M, Schiller C, Mannhart J (2004) Stability considerations and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: the qPlus sensor. Nanotechnology 15(2):S79–S86CrossRef Giessibl FJ, Hembacher S, Herz M, Schiller C, Mannhart J (2004) Stability considerations and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: the qPlus sensor. Nanotechnology 15(2):S79–S86CrossRef
101.
Zurück zum Zitat Albers BJ, Liebmann M, Schwendemann TC, Baykara MZ, Heyde M, Salmeron M, Altman EI, Schwarz UD (2008) Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy. Rev Sci Instrum 79(3):033704CrossRef Albers BJ, Liebmann M, Schwendemann TC, Baykara MZ, Heyde M, Salmeron M, Altman EI, Schwarz UD (2008) Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy. Rev Sci Instrum 79(3):033704CrossRef
102.
Zurück zum Zitat Giessibl FJ, Bielefeldt H, Hembacher S, Mannhart J (1999) Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy. Appl Surf Sci 140(3–4):352–357CrossRef Giessibl FJ, Bielefeldt H, Hembacher S, Mannhart J (1999) Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy. Appl Surf Sci 140(3–4):352–357CrossRef
103.
Zurück zum Zitat Perez R, Payne MC, Stich I, Terakura K (1997) Role of covalent tip-surface interactions in noncontact atomic force microscopy on reactive surfaces. Phys Rev Lett 78(4):678–681CrossRef Perez R, Payne MC, Stich I, Terakura K (1997) Role of covalent tip-surface interactions in noncontact atomic force microscopy on reactive surfaces. Phys Rev Lett 78(4):678–681CrossRef
104.
Zurück zum Zitat Perez R, Stich I, Payne MC, Terakura K (1998) Surface-tip interactions in noncontact atomic-force microscopy on reactive surfaces: Si(111). Phys Rev B 58(16):10835–10849CrossRef Perez R, Stich I, Payne MC, Terakura K (1998) Surface-tip interactions in noncontact atomic-force microscopy on reactive surfaces: Si(111). Phys Rev B 58(16):10835–10849CrossRef
105.
Zurück zum Zitat Bennewitz R, Bammerlin M, Guggisberg M, Loppacher C, Baratoff A, Meyer E, Guntherodt HJ (1999) Aspects of dynamic force microscopy on NaCl/Cu(111): resolution, tip-sample interactions and cantilever oscillation characteristics. Surf Interface Anal 27(5–6):462–466CrossRef Bennewitz R, Bammerlin M, Guggisberg M, Loppacher C, Baratoff A, Meyer E, Guntherodt HJ (1999) Aspects of dynamic force microscopy on NaCl/Cu(111): resolution, tip-sample interactions and cantilever oscillation characteristics. Surf Interface Anal 27(5–6):462–466CrossRef
106.
Zurück zum Zitat Guggisberg M, Bammerlin M, Loppacher C, Pfeiffer O, Abdurixit A, Barwich V, Bennewitz R, Baratoff A, Meyer E, Guntherodt HJ (2000) Separation of interactions by noncontact force microscopy. Phys Rev B 61(16):11151–11155CrossRef Guggisberg M, Bammerlin M, Loppacher C, Pfeiffer O, Abdurixit A, Barwich V, Bennewitz R, Baratoff A, Meyer E, Guntherodt HJ (2000) Separation of interactions by noncontact force microscopy. Phys Rev B 61(16):11151–11155CrossRef
107.
Zurück zum Zitat Kawai S, Glatzel T, Koch S, Baratoff A, Meyer E (2011) Interaction-induced atomic displacements revealed by drift-corrected dynamic force spectroscopy. Phys Rev B 83(3):035421CrossRef Kawai S, Glatzel T, Koch S, Baratoff A, Meyer E (2011) Interaction-induced atomic displacements revealed by drift-corrected dynamic force spectroscopy. Phys Rev B 83(3):035421CrossRef
108.
Zurück zum Zitat Sugimoto Y, Ueda K, Abe M, Morita S (2012) Three-dimensional scanning force/tunneling spectroscopy at room temperature. J Phys Condens Matter 24(8):084008CrossRef Sugimoto Y, Ueda K, Abe M, Morita S (2012) Three-dimensional scanning force/tunneling spectroscopy at room temperature. J Phys Condens Matter 24(8):084008CrossRef
109.
Zurück zum Zitat Braun DA, Weiner D, Such B, Fuchs H, Schirmeisen A (2009) Submolecular features of epitaxially grown PTCDA on Cu(111) analyzed by force field spectroscopy. Nanotechnology 20(26):264004CrossRef Braun DA, Weiner D, Such B, Fuchs H, Schirmeisen A (2009) Submolecular features of epitaxially grown PTCDA on Cu(111) analyzed by force field spectroscopy. Nanotechnology 20(26):264004CrossRef
110.
Zurück zum Zitat Mohn F, Gross L, Meyer G (2011) Measuring the short-range force field above a single molecule with atomic resolution. Appl Phys Lett 99(5):053106CrossRef Mohn F, Gross L, Meyer G (2011) Measuring the short-range force field above a single molecule with atomic resolution. Appl Phys Lett 99(5):053106CrossRef
111.
Zurück zum Zitat Such B, Glatzel T, Kawai S, Koch S, Meyer E (2010) Three-dimensional force spectroscopy of KBr(001) by tuning fork-based cryogenic noncontact atomic force microscopy. J Vac Sci Technol B 28(3):C4B1CrossRef Such B, Glatzel T, Kawai S, Koch S, Meyer E (2010) Three-dimensional force spectroscopy of KBr(001) by tuning fork-based cryogenic noncontact atomic force microscopy. J Vac Sci Technol B 28(3):C4B1CrossRef
112.
Zurück zum Zitat Such B, Glatzel T, Kawai S, Meyer E, Turansky R, Brndiar J, Stich I (2012) Interplay of the tip-sample junction stability and image contrast reversal on a Cu(111) surface revealed by the 3D force field. Nanotechnology 23(4):045705CrossRef Such B, Glatzel T, Kawai S, Meyer E, Turansky R, Brndiar J, Stich I (2012) Interplay of the tip-sample junction stability and image contrast reversal on a Cu(111) surface revealed by the 3D force field. Nanotechnology 23(4):045705CrossRef
113.
Zurück zum Zitat Abe M, Sugimoto Y, Custance O, Morita S (2005) Atom tracking for reproducible force spectroscopy at room temperature with non-contact atomic force microscopy. Nanotechnology 16(12):3029–3034CrossRef Abe M, Sugimoto Y, Custance O, Morita S (2005) Atom tracking for reproducible force spectroscopy at room temperature with non-contact atomic force microscopy. Nanotechnology 16(12):3029–3034CrossRef
114.
Zurück zum Zitat Abe M, Sugimoto Y, Namikawa T, Morita K, Oyabu N, Morita S (2007) Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy. Appl Phys Lett 90(20):203103CrossRef Abe M, Sugimoto Y, Namikawa T, Morita K, Oyabu N, Morita S (2007) Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy. Appl Phys Lett 90(20):203103CrossRef
115.
Zurück zum Zitat Enevoldsen GH, Pinto HP, Foster AS, Jensen MCR, Kuhnle A, Reichling M, Hofer WA, Lauritsen JV, Besenbacher F (2008) Detailed scanning probe microscopy tip models determined from simultaneous atom-resolved AFM and STM studies of the TiO(2)(110) surface. Phys Rev B 78(4):045416CrossRef Enevoldsen GH, Pinto HP, Foster AS, Jensen MCR, Kuhnle A, Reichling M, Hofer WA, Lauritsen JV, Besenbacher F (2008) Detailed scanning probe microscopy tip models determined from simultaneous atom-resolved AFM and STM studies of the TiO(2)(110) surface. Phys Rev B 78(4):045416CrossRef
116.
Zurück zum Zitat Oyabu N, Pou P, Sugimoto Y, Jelinek P, Abe M, Morita S, Perez R, Custance O (2006) Single atomic contact adhesion and dissipation in dynamic force microscopy. Phys Rev Lett 96(10):106101CrossRef Oyabu N, Pou P, Sugimoto Y, Jelinek P, Abe M, Morita S, Perez R, Custance O (2006) Single atomic contact adhesion and dissipation in dynamic force microscopy. Phys Rev Lett 96(10):106101CrossRef
117.
Zurück zum Zitat Pou P, Ghasemi SA, Jelinek P, Lenosky T, Goedecker S, Perez R (2009) Structure and stability of semiconductor tip apexes for atomic force microscopy. Nanotechnology 20(26):264015CrossRef Pou P, Ghasemi SA, Jelinek P, Lenosky T, Goedecker S, Perez R (2009) Structure and stability of semiconductor tip apexes for atomic force microscopy. Nanotechnology 20(26):264015CrossRef
118.
Zurück zum Zitat Bechstein R, Gonzalez C, Schutte J, Jelinek P, Perez R, Kuhnle A (2009) ‘All-inclusive’ imaging of the rutile TiO2(110) surface using NC-AFM. Nanotechnology 20(50):505703CrossRef Bechstein R, Gonzalez C, Schutte J, Jelinek P, Perez R, Kuhnle A (2009) ‘All-inclusive’ imaging of the rutile TiO2(110) surface using NC-AFM. Nanotechnology 20(50):505703CrossRef
119.
Zurück zum Zitat Arai T, Gritschneder S, Troger L, Reichling M (2010) Atomic resolution force microscopy imaging on a strongly ionic surface with differently functionalized tips. J Vac Sci Technol B 28(6):1279–1283CrossRef Arai T, Gritschneder S, Troger L, Reichling M (2010) Atomic resolution force microscopy imaging on a strongly ionic surface with differently functionalized tips. J Vac Sci Technol B 28(6):1279–1283CrossRef
120.
Zurück zum Zitat Lauritsen JV, Foster AS, Olesen GH, Christensen MC, Kuhnle A, Helveg S, Rostrup-Nielsen JR, Clausen BS, Reichling M, Besenbacher F (2006) Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy. Nanotechnology 17(14):3436–3441CrossRef Lauritsen JV, Foster AS, Olesen GH, Christensen MC, Kuhnle A, Helveg S, Rostrup-Nielsen JR, Clausen BS, Reichling M, Besenbacher F (2006) Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy. Nanotechnology 17(14):3436–3441CrossRef
121.
Zurück zum Zitat Enevoldsen GH, Foster AS, Christensen MC, Lauritsen JV, Besenbacher F (2007) Noncontact atomic force microscopy studies of vacancies and hydroxyls of TiO(2)(110): experiments and atomistic simulations. Phys Rev B 76(20):205415CrossRef Enevoldsen GH, Foster AS, Christensen MC, Lauritsen JV, Besenbacher F (2007) Noncontact atomic force microscopy studies of vacancies and hydroxyls of TiO(2)(110): experiments and atomistic simulations. Phys Rev B 76(20):205415CrossRef
122.
Zurück zum Zitat Uluutku B, Baykara MZ (2013) Effect of lateral tip stiffness on atomic-resolution force field spectroscopy. J Vac Sci Technol B 31(4):041801CrossRef Uluutku B, Baykara MZ (2013) Effect of lateral tip stiffness on atomic-resolution force field spectroscopy. J Vac Sci Technol B 31(4):041801CrossRef
123.
Zurück zum Zitat Sun ZX, Boneschanscher MP, Swart I, Vanmaekelbergh D, Liljeroth P (2011) Quantitative atomic force microscopy with carbon monoxide terminated tips. Phys Rev Lett 106(4):046104CrossRef Sun ZX, Boneschanscher MP, Swart I, Vanmaekelbergh D, Liljeroth P (2011) Quantitative atomic force microscopy with carbon monoxide terminated tips. Phys Rev Lett 106(4):046104CrossRef
124.
Zurück zum Zitat Schwarz A, Schwarz UD, Langkat S, Holscher H, Allers W, Wiesendanger R (2002) Dynamic force microscopy with atomic resolution at low temperatures. Appl Surf Sci 188(3–4):245–251CrossRef Schwarz A, Schwarz UD, Langkat S, Holscher H, Allers W, Wiesendanger R (2002) Dynamic force microscopy with atomic resolution at low temperatures. Appl Surf Sci 188(3–4):245–251CrossRef
125.
Zurück zum Zitat Rahe P, Schutte J, Schniederberend W, Reichling M, Abe M, Sugimoto Y, Kuhnle A (2011) Flexible drift-compensation system for precise 3D force mapping in severe drift environments. Rev Sci Instrum 82(6):063704CrossRef Rahe P, Schutte J, Schniederberend W, Reichling M, Abe M, Sugimoto Y, Kuhnle A (2011) Flexible drift-compensation system for precise 3D force mapping in severe drift environments. Rev Sci Instrum 82(6):063704CrossRef
126.
Zurück zum Zitat Fukuma T, Ichii T, Kobayashi K, Yamada H, Matsushige K (2005) True-molecular resolution imaging by frequency modulation atomic force microscopy in various environments. Appl Phys Lett 86(3):034103CrossRef Fukuma T, Ichii T, Kobayashi K, Yamada H, Matsushige K (2005) True-molecular resolution imaging by frequency modulation atomic force microscopy in various environments. Appl Phys Lett 86(3):034103CrossRef
127.
Zurück zum Zitat Fukuma T, Kobayashi K, Matsushige K, Yamada H (2005) True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl Phys Lett 87(3):034101CrossRef Fukuma T, Kobayashi K, Matsushige K, Yamada H (2005) True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl Phys Lett 87(3):034101CrossRef
128.
Zurück zum Zitat Fukuma T, Ueda Y, Yoshioka S, Asakawa H (2010) Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys Rev Lett 104(1):016101CrossRef Fukuma T, Ueda Y, Yoshioka S, Asakawa H (2010) Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys Rev Lett 104(1):016101CrossRef
129.
Zurück zum Zitat Herruzo ET, Asakawa H, Fukuma T, Garcia R (2013) Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions. Nanoscale 5(7):2678–2685CrossRef Herruzo ET, Asakawa H, Fukuma T, Garcia R (2013) Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions. Nanoscale 5(7):2678–2685CrossRef
130.
Zurück zum Zitat Asakawa H, Fukuma T (2009) Spurious-free cantilever excitation in liquid by piezoactuator with flexure drive mechanism. Rev Sci Instrum 80(10):103703CrossRef Asakawa H, Fukuma T (2009) Spurious-free cantilever excitation in liquid by piezoactuator with flexure drive mechanism. Rev Sci Instrum 80(10):103703CrossRef
131.
Zurück zum Zitat Asakawa H, Fukuma T (2009) The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid. Nanotechnology 20(26):264008CrossRef Asakawa H, Fukuma T (2009) The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid. Nanotechnology 20(26):264008CrossRef
132.
Zurück zum Zitat Mitani Y, Kubo M, Muramoto K, Fukuma T (2009) Wideband digital frequency detector with subtraction-based phase comparator for frequency modulation atomic force microscopy. Rev Sci Instrum 80(8):083705CrossRef Mitani Y, Kubo M, Muramoto K, Fukuma T (2009) Wideband digital frequency detector with subtraction-based phase comparator for frequency modulation atomic force microscopy. Rev Sci Instrum 80(8):083705CrossRef
133.
Zurück zum Zitat Fukuma T (2009) Wideband low-noise optical beam deflection sensor with photothermal excitation for liquid-environment atomic force microscopy. Rev Sci Instrum 80(2):023707CrossRef Fukuma T (2009) Wideband low-noise optical beam deflection sensor with photothermal excitation for liquid-environment atomic force microscopy. Rev Sci Instrum 80(2):023707CrossRef
134.
Zurück zum Zitat Guthner P (1996) Simultaneous imaging of Si(111) 7x7 with atomic resolution in scanning tunneling microscopy, atomic force microscopy, and atomic force microscopy noncontact mode. J Vac Sci Technol B 14(4):2428–2431CrossRef Guthner P (1996) Simultaneous imaging of Si(111) 7x7 with atomic resolution in scanning tunneling microscopy, atomic force microscopy, and atomic force microscopy noncontact mode. J Vac Sci Technol B 14(4):2428–2431CrossRef
135.
Zurück zum Zitat Luthi R, Meyer E, Bammerlin M, Baratoff A, Lehmann T, Howald L, Gerber C, Guntherodt HJ (1996) Atomic resolution in dynamic force microscopy across steps on Si(111)7x7. Z Physik B-Condens Matter 100(2):165–167CrossRef Luthi R, Meyer E, Bammerlin M, Baratoff A, Lehmann T, Howald L, Gerber C, Guntherodt HJ (1996) Atomic resolution in dynamic force microscopy across steps on Si(111)7x7. Z Physik B-Condens Matter 100(2):165–167CrossRef
136.
Zurück zum Zitat Nakagiri N, Suzuki M, Okiguchi K, Sugimura H (1997) Site discrimination of adatoms in Si(111)-7x7 by noncontact atomic force microscopy. Surf Sci 373(1):L329–L332CrossRef Nakagiri N, Suzuki M, Okiguchi K, Sugimura H (1997) Site discrimination of adatoms in Si(111)-7x7 by noncontact atomic force microscopy. Surf Sci 373(1):L329–L332CrossRef
137.
Zurück zum Zitat Sawada D, Sugimoto Y, Abe M, Morita S (2010) Observation of subsurface atoms of the si(111)-(7x7) surface by atomic force microscopy. Appl Phys Express 3(11):116602CrossRef Sawada D, Sugimoto Y, Abe M, Morita S (2010) Observation of subsurface atoms of the si(111)-(7x7) surface by atomic force microscopy. Appl Phys Express 3(11):116602CrossRef
138.
Zurück zum Zitat Sugimoto Y, Nakajima Y, Sawada D, Morita K, Abe M, Morita S (2010) Simultaneous AFM and STM measurements on the Si(111)-(7x7) surface. Phys Rev B 81(24):245322CrossRef Sugimoto Y, Nakajima Y, Sawada D, Morita K, Abe M, Morita S (2010) Simultaneous AFM and STM measurements on the Si(111)-(7x7) surface. Phys Rev B 81(24):245322CrossRef
139.
Zurück zum Zitat Uozumi T, Tomiyoshi Y, Suehira N, Sugawara Y, Morita S (2002) Observation of Si(100) surface with noncontact atomic force microscope at 5 K. Appl Surf Sci 188(3–4):279–284CrossRef Uozumi T, Tomiyoshi Y, Suehira N, Sugawara Y, Morita S (2002) Observation of Si(100) surface with noncontact atomic force microscope at 5 K. Appl Surf Sci 188(3–4):279–284CrossRef
140.
Zurück zum Zitat Sweetman A, Jarvis S, Danza R, Bamidele J, Gangopadhyay S, Shaw GA, Kantorovich L, Moriarty P (2011) Toggling bistable atoms via mechanical switching of bond angle. Phys Rev Lett 106(13):136101CrossRef Sweetman A, Jarvis S, Danza R, Bamidele J, Gangopadhyay S, Shaw GA, Kantorovich L, Moriarty P (2011) Toggling bistable atoms via mechanical switching of bond angle. Phys Rev Lett 106(13):136101CrossRef
141.
Zurück zum Zitat Sweetman A, Jarvis S, Danza R, Bamidele J, Kantorovich L, Moriarty P (2011) Manipulating Si(100) at 5 K using qPlus frequency modulated atomic force microscopy: role of defects and dynamics in the mechanical switching of atoms. Phys Rev B 84(8):085426CrossRef Sweetman A, Jarvis S, Danza R, Bamidele J, Kantorovich L, Moriarty P (2011) Manipulating Si(100) at 5 K using qPlus frequency modulated atomic force microscopy: role of defects and dynamics in the mechanical switching of atoms. Phys Rev B 84(8):085426CrossRef
142.
Zurück zum Zitat Sweetman A, Jarvis S, Danza R, Moriarty P (2012) Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: probing the probe. Beilstein J Nanotechnol 3:25–32CrossRef Sweetman A, Jarvis S, Danza R, Moriarty P (2012) Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: probing the probe. Beilstein J Nanotechnol 3:25–32CrossRef
143.
Zurück zum Zitat Naitoh Y, Li YJ, Nomura H, Kageshima M, Sugawara Y (2010) Effect of surface stress around the sa step of Si(001) on the dimer structure determined by noncontact atomic force microscopy at 5 K. J Physical Soc Japan 79(1):013601CrossRef Naitoh Y, Li YJ, Nomura H, Kageshima M, Sugawara Y (2010) Effect of surface stress around the sa step of Si(001) on the dimer structure determined by noncontact atomic force microscopy at 5 K. J Physical Soc Japan 79(1):013601CrossRef
144.
Zurück zum Zitat Sugimoto Y, Abe M, Yoshimoto K, Custance O, Yi I, Morita S (2005) Non-contact atomic force microscopy study of the Sn/Si(111) mosaic phase. Appl Surf Sci 241(1–2):23–27CrossRef Sugimoto Y, Abe M, Yoshimoto K, Custance O, Yi I, Morita S (2005) Non-contact atomic force microscopy study of the Sn/Si(111) mosaic phase. Appl Surf Sci 241(1–2):23–27CrossRef
145.
Zurück zum Zitat Yi I, Sugimoto Y, Nishi R, Morita S (2006) Study on topographic images of Sn/Si(111)-(root 3 x root 3)R30° surface by non-contact AFM. Surf Sci 600(17):3382–3387CrossRef Yi I, Sugimoto Y, Nishi R, Morita S (2006) Study on topographic images of Sn/Si(111)-(root 3 x root 3)R30° surface by non-contact AFM. Surf Sci 600(17):3382–3387CrossRef
146.
Zurück zum Zitat Yi I, Nishi R, Sugimoto Y, Morita S (2007) Non-contact AFM observation of the (root 3x root 3) to (3x3) phase transition on Sn/Ge(111) and Sn/Si(111) surfaces. Appl Surf Sci 253(6):3072–3076CrossRef Yi I, Nishi R, Sugimoto Y, Morita S (2007) Non-contact AFM observation of the (root 3x root 3) to (3x3) phase transition on Sn/Ge(111) and Sn/Si(111) surfaces. Appl Surf Sci 253(6):3072–3076CrossRef
147.
Zurück zum Zitat Sugimoto Y, Pou P, Custance O, Jelinek P, Morita S, Perez R, Abe M (2006) Real topography, atomic relaxations, and short-range chemical interactions in atomic force microscopy: the case of the alpha-Sn/Si(111)-(root 3x root 3)R30° surface. Phys Rev B 73(20):205329CrossRef Sugimoto Y, Pou P, Custance O, Jelinek P, Morita S, Perez R, Abe M (2006) Real topography, atomic relaxations, and short-range chemical interactions in atomic force microscopy: the case of the alpha-Sn/Si(111)-(root 3x root 3)R30° surface. Phys Rev B 73(20):205329CrossRef
148.
Zurück zum Zitat Abe M, Sugimoto Y, Morita S (2005) Imaging the restatom of the Ge(111)-c(2x8) surface with noncontact atomic force microscopy at room temperature. Nanotechnology 16(3):S68–S72CrossRef Abe M, Sugimoto Y, Morita S (2005) Imaging the restatom of the Ge(111)-c(2x8) surface with noncontact atomic force microscopy at room temperature. Nanotechnology 16(3):S68–S72CrossRef
149.
Zurück zum Zitat Schwarz A, Allers W, Schwarz UD, Wiesendanger R (2000) Detection of doping atom distributions and individual dopants in InAs(110) by dynamic-mode scanning force microscopy in ultrahigh vacuum. Phys Rev B 62(20):13617–13622CrossRef Schwarz A, Allers W, Schwarz UD, Wiesendanger R (2000) Detection of doping atom distributions and individual dopants in InAs(110) by dynamic-mode scanning force microscopy in ultrahigh vacuum. Phys Rev B 62(20):13617–13622CrossRef
150.
Zurück zum Zitat Henrich VE, Cox PA (1994) The surface science of metal oxides. Cambridge University Press, Cambridge Henrich VE, Cox PA (1994) The surface science of metal oxides. Cambridge University Press, Cambridge
151.
Zurück zum Zitat Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229CrossRef Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229CrossRef
152.
Zurück zum Zitat Freund HJ, Pacchioni G (2008) Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem Soc Rev 37(10):2224–2242CrossRef Freund HJ, Pacchioni G (2008) Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem Soc Rev 37(10):2224–2242CrossRef
153.
Zurück zum Zitat Raza H, Pang CL, Haycock SA, Thornton G (1999) Non-contact atomic force microscopy imaging of TiO2(100) surfaces. Appl Surf Sci 140(3–4):271–275CrossRef Raza H, Pang CL, Haycock SA, Thornton G (1999) Non-contact atomic force microscopy imaging of TiO2(100) surfaces. Appl Surf Sci 140(3–4):271–275CrossRef
154.
Zurück zum Zitat Enevoldsen GH, Pinto HP, Foster AS, Jensen MCR, Hofer WA, Hammer B, Lauritsen JV, Besenbacher F (2009) Imaging of the hydrogen subsurface site in rutile TiO(2). Phys Rev Lett 102(13):136103CrossRef Enevoldsen GH, Pinto HP, Foster AS, Jensen MCR, Hofer WA, Hammer B, Lauritsen JV, Besenbacher F (2009) Imaging of the hydrogen subsurface site in rutile TiO(2). Phys Rev Lett 102(13):136103CrossRef
155.
Zurück zum Zitat Yurtsever A, Sugimoto Y, Abe M, Morita S (2010) NC-AFM imaging of the TiO(2)(110)-(1x1) surface at low temperature. Nanotechnology 21(16):165702CrossRef Yurtsever A, Sugimoto Y, Abe M, Morita S (2010) NC-AFM imaging of the TiO(2)(110)-(1x1) surface at low temperature. Nanotechnology 21(16):165702CrossRef
156.
Zurück zum Zitat Yurtsever A, Fernandez-Torre D, Gonzalez C, Jelinek P, Pou P, Sugimoto Y, Abe M, Perez R, Morita S (2012) Understanding image contrast formation in TiO2 with force spectroscopy. Phys Rev B 85(12):125416CrossRef Yurtsever A, Fernandez-Torre D, Gonzalez C, Jelinek P, Pou P, Sugimoto Y, Abe M, Perez R, Morita S (2012) Understanding image contrast formation in TiO2 with force spectroscopy. Phys Rev B 85(12):125416CrossRef
157.
Zurück zum Zitat Pang CL, Raza H, Haycock SA, Thornton G (2002) Noncontact atomic force microscopy imaging of ultrathin Al2O3 on NiAl(110). Phys Rev B 65(20):201401CrossRef Pang CL, Raza H, Haycock SA, Thornton G (2002) Noncontact atomic force microscopy imaging of ultrathin Al2O3 on NiAl(110). Phys Rev B 65(20):201401CrossRef
158.
Zurück zum Zitat Wang J, Howard A, Egdell RG, Pethica JB, Foord JS (2002) Arrangement of rotational domains of the (root 31 x root 31) R +/− 9° reconstruction of Al2O3(0001) revealed by non-contact AFM. Surf Sci 515(2–3):337–343CrossRef Wang J, Howard A, Egdell RG, Pethica JB, Foord JS (2002) Arrangement of rotational domains of the (root 31 x root 31) R +/− 9° reconstruction of Al2O3(0001) revealed by non-contact AFM. Surf Sci 515(2–3):337–343CrossRef
159.
Zurück zum Zitat Simon GH, Konig T, Nilius M, Rust HP, Heyde M, Freund HJ (2008) Atomically resolved force microscopy images of complex surface unit cells: ultrathin alumina film on NiAl(110). Phys Rev B 78(11):113401CrossRef Simon GH, Konig T, Nilius M, Rust HP, Heyde M, Freund HJ (2008) Atomically resolved force microscopy images of complex surface unit cells: ultrathin alumina film on NiAl(110). Phys Rev B 78(11):113401CrossRef
160.
Zurück zum Zitat Simon GH, Konig T, Rust HP, Heyde M, Freund HJ (2009) Atomic structure of the ultrathin alumina on NiAl(110) and its antiphase domain boundaries as seen by frequency modulation dynamic force microscopy. New J Phys 11(9):093009CrossRef Simon GH, Konig T, Rust HP, Heyde M, Freund HJ (2009) Atomic structure of the ultrathin alumina on NiAl(110) and its antiphase domain boundaries as seen by frequency modulation dynamic force microscopy. New J Phys 11(9):093009CrossRef
161.
Zurück zum Zitat Lauritsen JV, Jensen MCR, Venkataramani K, Hinnemann B, Helveg S, Clausen BS, Besenbacher F (2009) Atomic-scale structure and stability of the root 31 x root 31R9° surface of Al2O3(0001). Phys Rev Lett 103(7):076103CrossRef Lauritsen JV, Jensen MCR, Venkataramani K, Hinnemann B, Helveg S, Clausen BS, Besenbacher F (2009) Atomic-scale structure and stability of the root 31 x root 31R9° surface of Al2O3(0001). Phys Rev Lett 103(7):076103CrossRef
162.
Zurück zum Zitat Heyde M, Simon GH, Lichtenstein L (2013) Resolving oxide surfaces – from point and line defects to complex network structures. Phys Status Solidi B-Basic Solid State Phys 250(5):895–921CrossRef Heyde M, Simon GH, Lichtenstein L (2013) Resolving oxide surfaces – from point and line defects to complex network structures. Phys Status Solidi B-Basic Solid State Phys 250(5):895–921CrossRef
163.
Zurück zum Zitat Simon GH, Konig T, Heinke L, Lichtenstein L, Heyde M, Freund HJ (2011) Atomic structure of surface defects in alumina studied by dynamic force microscopy: strain-relief-, translation- and reflection-related boundaries, including their junctions. New J Phys 13(12):123028CrossRef Simon GH, Konig T, Heinke L, Lichtenstein L, Heyde M, Freund HJ (2011) Atomic structure of surface defects in alumina studied by dynamic force microscopy: strain-relief-, translation- and reflection-related boundaries, including their junctions. New J Phys 13(12):123028CrossRef
164.
Zurück zum Zitat Fukui K, Namai Y, Iwasawa Y (2002) Imaging of surface oxygen atoms and their defect structures on CeO2(111) by noncontact atomic force microscopy. Appl Surf Sci 188(3–4):252–256CrossRef Fukui K, Namai Y, Iwasawa Y (2002) Imaging of surface oxygen atoms and their defect structures on CeO2(111) by noncontact atomic force microscopy. Appl Surf Sci 188(3–4):252–256CrossRef
165.
Zurück zum Zitat Namai Y, Fukui KI, Iwasawa Y (2003) Atom-resolved noncontact atomic force microscopic and scanning tunneling microscopic observations of the structure and dynamic behavior of CeO2(111) surfaces. Catal Today 85(2–4):79–91CrossRef Namai Y, Fukui KI, Iwasawa Y (2003) Atom-resolved noncontact atomic force microscopic and scanning tunneling microscopic observations of the structure and dynamic behavior of CeO2(111) surfaces. Catal Today 85(2–4):79–91CrossRef
166.
Zurück zum Zitat Namai Y, Fukui K, Iwasawa Y (2003) Atom-resolved noncontact atomic force microscopic observations of CeO2(111) surfaces with different oxidation states: surface structure and behavior of surface oxygen atoms. J Phys Chem B 107(42):11666–11673CrossRef Namai Y, Fukui K, Iwasawa Y (2003) Atom-resolved noncontact atomic force microscopic observations of CeO2(111) surfaces with different oxidation states: surface structure and behavior of surface oxygen atoms. J Phys Chem B 107(42):11666–11673CrossRef
167.
Zurück zum Zitat Gritschneder S, Reichling M (2007) Structural elements of CeO2(111) surfaces. Nanotechnology 18(4):044024CrossRef Gritschneder S, Reichling M (2007) Structural elements of CeO2(111) surfaces. Nanotechnology 18(4):044024CrossRef
168.
Zurück zum Zitat Gritschneder S, Reichling M (2008) Atomic resolution imaging on CeO2(111) with hydroxylated probes. J Phys Chem C 112(6):2045–2049CrossRef Gritschneder S, Reichling M (2008) Atomic resolution imaging on CeO2(111) with hydroxylated probes. J Phys Chem C 112(6):2045–2049CrossRef
169.
Zurück zum Zitat Pieper HH, Derks C, Zoellner MH, Olbrich R, Troger L, Schroeder T, Neumann M, Reichling M (2012) Morphology and nanostructure of CeO2(111) surfaces of single crystals and Si(111) supported ceria films. Phys Chem Chem Phys 14(44):15361–15368CrossRef Pieper HH, Derks C, Zoellner MH, Olbrich R, Troger L, Schroeder T, Neumann M, Reichling M (2012) Morphology and nanostructure of CeO2(111) surfaces of single crystals and Si(111) supported ceria films. Phys Chem Chem Phys 14(44):15361–15368CrossRef
170.
Zurück zum Zitat Hosoi H, Sueoka K, Hayakawa K, Mukasa K (2000) Atomic resolved imaging of cleaved NiO(100) surfaces by NC-AFM. Appl Surf Sci 157(4):218–221CrossRef Hosoi H, Sueoka K, Hayakawa K, Mukasa K (2000) Atomic resolved imaging of cleaved NiO(100) surfaces by NC-AFM. Appl Surf Sci 157(4):218–221CrossRef
171.
Zurück zum Zitat Allers W, Langkat S, Wiesendanger R (2001) Dynamic low-temperature scanning force microscopy on nickel oxide (001). Appl Phys Mater Sci Process 72:S27–S30CrossRef Allers W, Langkat S, Wiesendanger R (2001) Dynamic low-temperature scanning force microscopy on nickel oxide (001). Appl Phys Mater Sci Process 72:S27–S30CrossRef
172.
Zurück zum Zitat Kaiser U, Schwarz A, Wiesendanger R (2007) Magnetic exchange force microscopy with atomic resolution. Nature 446(7135):522–525CrossRef Kaiser U, Schwarz A, Wiesendanger R (2007) Magnetic exchange force microscopy with atomic resolution. Nature 446(7135):522–525CrossRef
173.
Zurück zum Zitat Schmid M, Mannhart J, Giessibl FJ (2008) Searching atomic spin contrast on nickel oxide (001) by force microscopy. Phys Rev B 77(4):045402CrossRef Schmid M, Mannhart J, Giessibl FJ (2008) Searching atomic spin contrast on nickel oxide (001) by force microscopy. Phys Rev B 77(4):045402CrossRef
174.
Zurück zum Zitat Kaiser U, Schwarz A, Wiesendanger R (2008) Evaluating local properties of magnetic tips utilizing an antiferromagnetic surface. Phys Rev B 78(10):104418CrossRef Kaiser U, Schwarz A, Wiesendanger R (2008) Evaluating local properties of magnetic tips utilizing an antiferromagnetic surface. Phys Rev B 78(10):104418CrossRef
175.
Zurück zum Zitat Barth C, Henry CR (2003) Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. Phys Rev Lett 91(19):196102CrossRef Barth C, Henry CR (2003) Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. Phys Rev Lett 91(19):196102CrossRef
176.
Zurück zum Zitat Heyde M, Sterrer M, Rust HP, Freund HJ (2005) Atomic resolution on MgO(001) by atomic force microscopy using a double quartz tuning fork sensor at low-temperature and ultrahigh vacuum. Appl Phys Lett 87(8):083104CrossRef Heyde M, Sterrer M, Rust HP, Freund HJ (2005) Atomic resolution on MgO(001) by atomic force microscopy using a double quartz tuning fork sensor at low-temperature and ultrahigh vacuum. Appl Phys Lett 87(8):083104CrossRef
177.
Zurück zum Zitat Heyde M, Sterrer M, Rust HP, Freund HJ (2006) Frequency modulated atomic force microscopy on MgO(001) thin films: interpretation of atomic image resolution and distance dependence of tip-sample interaction. Nanotechnology 17(7):S101–S106CrossRef Heyde M, Sterrer M, Rust HP, Freund HJ (2006) Frequency modulated atomic force microscopy on MgO(001) thin films: interpretation of atomic image resolution and distance dependence of tip-sample interaction. Nanotechnology 17(7):S101–S106CrossRef
178.
Zurück zum Zitat Torbrugge S, Ostendorf F, Reichling M (2009) Stabilization of zinc-terminated ZnO(0001) by a modified surface stoichiometry. J Phys Chem C 113(12):4909–4914CrossRef Torbrugge S, Ostendorf F, Reichling M (2009) Stabilization of zinc-terminated ZnO(0001) by a modified surface stoichiometry. J Phys Chem C 113(12):4909–4914CrossRef
179.
Zurück zum Zitat Suzuki S, Ohminami Y, Tsutsumi T, Shoaib MM, Ichikawa M, Asakura K (2003) The first observation of an atomic scale noncontact AFM image of MoO3(010). Chem Lett 32(12):1098–1099CrossRef Suzuki S, Ohminami Y, Tsutsumi T, Shoaib MM, Ichikawa M, Asakura K (2003) The first observation of an atomic scale noncontact AFM image of MoO3(010). Chem Lett 32(12):1098–1099CrossRef
180.
Zurück zum Zitat Rasmussen MK, Foster AS, Hinnemann B, Canova FF, Helveg S, Meinander K, Martin NM, Knudsen J, Vlad A, Lundgren E, Stierle A, Besenbacher F, Lauritsen JV (2011) Stable cation inversion at the MgAl2O4(100) surface. Phys Rev Lett 107(3):036102CrossRef Rasmussen MK, Foster AS, Hinnemann B, Canova FF, Helveg S, Meinander K, Martin NM, Knudsen J, Vlad A, Lundgren E, Stierle A, Besenbacher F, Lauritsen JV (2011) Stable cation inversion at the MgAl2O4(100) surface. Phys Rev Lett 107(3):036102CrossRef
181.
Zurück zum Zitat Rasmussen MK, Meinander K, Besenbacher F, Lauritsen JV (2012) Noncontact atomic force microscopy study of the spinel MgAl2O4(111) surface. Beilstein J Nanotechnol 3:192–197CrossRef Rasmussen MK, Meinander K, Besenbacher F, Lauritsen JV (2012) Noncontact atomic force microscopy study of the spinel MgAl2O4(111) surface. Beilstein J Nanotechnol 3:192–197CrossRef
182.
Zurück zum Zitat Kishimoto S, Kageshima M, Naitoh Y, Li YJ, Sugawara Y (2008) Study of oxidized Cu(110) surface using noncontact atomic force microscopy. Surf Sci 602(13):2175–2182CrossRef Kishimoto S, Kageshima M, Naitoh Y, Li YJ, Sugawara Y (2008) Study of oxidized Cu(110) surface using noncontact atomic force microscopy. Surf Sci 602(13):2175–2182CrossRef
183.
Zurück zum Zitat Lauritsen JV, Reichling M (2010) Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces. J Phys Condens Matter 22(26):263001CrossRef Lauritsen JV, Reichling M (2010) Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces. J Phys Condens Matter 22(26):263001CrossRef
184.
Zurück zum Zitat Irie H, Sunada K, Hashimoto K (2004) Recent developments in TiO2 photocatalysis: novel applications to interior ecology materials and energy saving systems. Electrochemistry 72(12):807–812 Irie H, Sunada K, Hashimoto K (2004) Recent developments in TiO2 photocatalysis: novel applications to interior ecology materials and energy saving systems. Electrochemistry 72(12):807–812
185.
Zurück zum Zitat Onishi H, Iwasawa Y (1994) Reconstruction of TiO2(110) surface – STM study with atomic-scale resolution. Surf Sci 313(1–2):L783–L789CrossRef Onishi H, Iwasawa Y (1994) Reconstruction of TiO2(110) surface – STM study with atomic-scale resolution. Surf Sci 313(1–2):L783–L789CrossRef
186.
Zurück zum Zitat Wendt S, Matthiesen J, Schaub R, Vestergaard EK, Laegsgaard E, Besenbacher F, Hammer B (2006) Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Phys Rev Lett 96(6):066107CrossRef Wendt S, Matthiesen J, Schaub R, Vestergaard EK, Laegsgaard E, Besenbacher F, Hammer B (2006) Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Phys Rev Lett 96(6):066107CrossRef
187.
Zurück zum Zitat Schaub R, Thostrup P, Lopez N, Laegsgaard E, Stensgaard I, Norskov JK, Besenbacher F (2001) Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). Phys Rev Lett 87(26):266104CrossRef Schaub R, Thostrup P, Lopez N, Laegsgaard E, Stensgaard I, Norskov JK, Besenbacher F (2001) Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). Phys Rev Lett 87(26):266104CrossRef
188.
Zurück zum Zitat Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlstrom E, Rasmussen MD, Thostrup P, Molina LM, Laegsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Oxygen vacancies on TiO2(110) and their interaction with H2O and O-2: a combined high-resolution STM and DFT study. Surf Sci 598(1–3):226–245CrossRef Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlstrom E, Rasmussen MD, Thostrup P, Molina LM, Laegsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Oxygen vacancies on TiO2(110) and their interaction with H2O and O-2: a combined high-resolution STM and DFT study. Surf Sci 598(1–3):226–245CrossRef
189.
Zurück zum Zitat Foster AS, Pakarinen OH, Airaksinen JM, Gale JD, Nieminen RM (2003) Simulating atomic force microscopy imaging of the ideal and defected TiO2(110) surface. Phys Rev B 68(19):195410CrossRef Foster AS, Pakarinen OH, Airaksinen JM, Gale JD, Nieminen RM (2003) Simulating atomic force microscopy imaging of the ideal and defected TiO2(110) surface. Phys Rev B 68(19):195410CrossRef
190.
Zurück zum Zitat Pinto HP, Enevoldsen GH, Besenbacher F, Lauritsen JV, Foster AS (2009) The role of tip size and orientation, tip-surface relaxations and surface impurities in simultaneous AFM and STM studies on the TiO(2)(110) surface. Nanotechnology 20(26):264020CrossRef Pinto HP, Enevoldsen GH, Besenbacher F, Lauritsen JV, Foster AS (2009) The role of tip size and orientation, tip-surface relaxations and surface impurities in simultaneous AFM and STM studies on the TiO(2)(110) surface. Nanotechnology 20(26):264020CrossRef
191.
Zurück zum Zitat Bammerlin M, Lüthi R, Meyer E, Baratoff A, Lü J, Guggisberg M, Gerber C, Howald L, Güntherodt HJ (1997) True atomic resolution on the surface of an insulator via ultrahigh vacuum dynamic force microscopy. Probe Microsc 1:3 Bammerlin M, Lüthi R, Meyer E, Baratoff A, Lü J, Guggisberg M, Gerber C, Howald L, Güntherodt HJ (1997) True atomic resolution on the surface of an insulator via ultrahigh vacuum dynamic force microscopy. Probe Microsc 1:3
192.
Zurück zum Zitat Foster AS, Barth C, Shluger AL, Reichling M (2001) Unambiguous interpretation of atomically resolved force microscopy images of an insulator. Phys Rev Lett 86(11):2373–2376CrossRef Foster AS, Barth C, Shluger AL, Reichling M (2001) Unambiguous interpretation of atomically resolved force microscopy images of an insulator. Phys Rev Lett 86(11):2373–2376CrossRef
193.
Zurück zum Zitat Foster AS, Barth C, Shluger AL, Nieminen RM, Reichling M (2002) Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2(111) as a reference surface. Phys Rev B 66(23):235417CrossRef Foster AS, Barth C, Shluger AL, Nieminen RM, Reichling M (2002) Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2(111) as a reference surface. Phys Rev B 66(23):235417CrossRef
194.
Zurück zum Zitat Barth C, Reichling M (2000) Resolving ions and vacancies at step edges on insulating surfaces. Surf Sci 470(1–2):L99–L103CrossRef Barth C, Reichling M (2000) Resolving ions and vacancies at step edges on insulating surfaces. Surf Sci 470(1–2):L99–L103CrossRef
195.
Zurück zum Zitat Bennewitz R, Schar S, Barwich V, Pfeiffer O, Meyer E, Krok F, Such B, Kolodzej J, Szymonski M (2001) Atomic-resolution images of radiation damage in KBr. Surf Sci 474(1–3):L197–L202CrossRef Bennewitz R, Schar S, Barwich V, Pfeiffer O, Meyer E, Krok F, Such B, Kolodzej J, Szymonski M (2001) Atomic-resolution images of radiation damage in KBr. Surf Sci 474(1–3):L197–L202CrossRef
196.
Zurück zum Zitat Bennewitz R, Pfeiffer O, Schar S, Barwich V, Meyer E, Kantorovich LN (2002) Atomic corrugation in nc-AFM of alkali halides. Appl Surf Sci 188(3–4):232–237CrossRef Bennewitz R, Pfeiffer O, Schar S, Barwich V, Meyer E, Kantorovich LN (2002) Atomic corrugation in nc-AFM of alkali halides. Appl Surf Sci 188(3–4):232–237CrossRef
197.
Zurück zum Zitat Fujii S, Fujihira M (2007) Atomic contrast on a point defect on CaF2(111) imaged by non-contact atomic force microscopy. Nanotechnology 18(8):084011CrossRef Fujii S, Fujihira M (2007) Atomic contrast on a point defect on CaF2(111) imaged by non-contact atomic force microscopy. Nanotechnology 18(8):084011CrossRef
198.
Zurück zum Zitat Giessibl FJ, Reichling M (2005) Investigating atomic details of the CaF2(111) surface with a qPlus sensor. Nanotechnology 16(3):S118–S124CrossRef Giessibl FJ, Reichling M (2005) Investigating atomic details of the CaF2(111) surface with a qPlus sensor. Nanotechnology 16(3):S118–S124CrossRef
199.
Zurück zum Zitat Hirth S, Ostendorf F, Reichling M (2006) Lateral manipulation of atomic size defects on the CaF2(111) surface. Nanotechnology 17(7):S148–S154CrossRef Hirth S, Ostendorf F, Reichling M (2006) Lateral manipulation of atomic size defects on the CaF2(111) surface. Nanotechnology 17(7):S148–S154CrossRef
200.
Zurück zum Zitat Hoffmann R, Lantz MA, Hug HJ, van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ (2002) Atomic resolution imaging and force versus distance measurements on KBr(001) using low temperature scanning force microscopy. Appl Surf Sci 188(3–4):238–244CrossRef Hoffmann R, Lantz MA, Hug HJ, van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Guntherodt HJ (2002) Atomic resolution imaging and force versus distance measurements on KBr(001) using low temperature scanning force microscopy. Appl Surf Sci 188(3–4):238–244CrossRef
201.
Zurück zum Zitat Bammerlin M, Luthi R, Meyer E, Baratoff A, Lu J, Guggisberg M, Loppacher C, Gerber C, Guntherodt HJ (1998) Dynamic SFM with true atomic resolution on alkali halide surfaces. Appl Phys Mater Sci Process 66:S293–S294CrossRef Bammerlin M, Luthi R, Meyer E, Baratoff A, Lu J, Guggisberg M, Loppacher C, Gerber C, Guntherodt HJ (1998) Dynamic SFM with true atomic resolution on alkali halide surfaces. Appl Phys Mater Sci Process 66:S293–S294CrossRef
202.
Zurück zum Zitat Barth C, Henry CR (2008) Imaging Suzuki precipitates on NaCl: Mg(2+)(001) by scanning force microscopy. Phys Rev Lett 100(9):096101CrossRef Barth C, Henry CR (2008) Imaging Suzuki precipitates on NaCl: Mg(2+)(001) by scanning force microscopy. Phys Rev Lett 100(9):096101CrossRef
203.
Zurück zum Zitat Barth C, Henry CR (2009) NaCl(001) surfaces nanostructured by Suzuki precipitates: a scanning force microscopy study. New J Phys 11(4):043003CrossRef Barth C, Henry CR (2009) NaCl(001) surfaces nanostructured by Suzuki precipitates: a scanning force microscopy study. New J Phys 11(4):043003CrossRef
204.
Zurück zum Zitat Foster AS, Barth C, Henry CR (2009) Chemical identification of ions in doped NaCl by scanning force microscopy. Phys Rev Lett 102(25):256103CrossRef Foster AS, Barth C, Henry CR (2009) Chemical identification of ions in doped NaCl by scanning force microscopy. Phys Rev Lett 102(25):256103CrossRef
205.
Zurück zum Zitat Bennewitz R, Foster AS, Kantorovich LN, Bammerlin M, Loppacher C, Schar S, Guggisberg M, Meyer E, Shluger AL (2000) Atomically resolved edges and kinks of NaCl islands on Cu(111): experiment and theory. Phys Rev B 62(3):2074–2084CrossRef Bennewitz R, Foster AS, Kantorovich LN, Bammerlin M, Loppacher C, Schar S, Guggisberg M, Meyer E, Shluger AL (2000) Atomically resolved edges and kinks of NaCl islands on Cu(111): experiment and theory. Phys Rev B 62(3):2074–2084CrossRef
206.
Zurück zum Zitat Klust A, Ohta T, Bostwick AA, Yu QM, Ohuchi FS, Olmstead MA (2004) Atomically resolved imaging of a CaF bilayer on Si(111): subsurface atoms and the image contrast in scanning force microscopy. Phys Rev B 69(3):035405CrossRef Klust A, Ohta T, Bostwick AA, Yu QM, Ohuchi FS, Olmstead MA (2004) Atomically resolved imaging of a CaF bilayer on Si(111): subsurface atoms and the image contrast in scanning force microscopy. Phys Rev B 69(3):035405CrossRef
207.
Zurück zum Zitat Filleter T, Paul W, Bennewitz R (2008) Atomic structure and friction of ultrathin films of KBr on Cu(100). Phys Rev B 77(3):035430CrossRef Filleter T, Paul W, Bennewitz R (2008) Atomic structure and friction of ultrathin films of KBr on Cu(100). Phys Rev B 77(3):035430CrossRef
208.
Zurück zum Zitat Holscher H, Allers W, Schwarz UD, Schwarz A, Wiesendanger R (2000) Interpretation of “true atomic resolution” images of graphite (0001) in noncontact atomic force microscopy. Phys Rev B 62(11):6967–6970CrossRef Holscher H, Allers W, Schwarz UD, Schwarz A, Wiesendanger R (2000) Interpretation of “true atomic resolution” images of graphite (0001) in noncontact atomic force microscopy. Phys Rev B 62(11):6967–6970CrossRef
209.
Zurück zum Zitat Hembacher S, Giessibl FJ, Mannhart J, Quate CF (2003) Revealing the hidden atom in graphite by low-temperature atomic force microscopy. Proc Natl Acad Sci U S A 100(22):12539–12542CrossRef Hembacher S, Giessibl FJ, Mannhart J, Quate CF (2003) Revealing the hidden atom in graphite by low-temperature atomic force microscopy. Proc Natl Acad Sci U S A 100(22):12539–12542CrossRef
210.
Zurück zum Zitat Kawai S, Kawakatsu H (2009) Surface-relaxation-induced giant corrugation on graphite (0001). Phys Rev B 79(11):115440CrossRef Kawai S, Kawakatsu H (2009) Surface-relaxation-induced giant corrugation on graphite (0001). Phys Rev B 79(11):115440CrossRef
211.
Zurück zum Zitat Ashino M, Schwarz A, Behnke T, Wiesendanger R (2004) Atomic-resolution dynamic force microscopy and spectroscopy of a single-walled carbon nanotube: characterization of interatomic van der Waals forces. Phys Rev Lett 93(13):136101CrossRef Ashino M, Schwarz A, Behnke T, Wiesendanger R (2004) Atomic-resolution dynamic force microscopy and spectroscopy of a single-walled carbon nanotube: characterization of interatomic van der Waals forces. Phys Rev Lett 93(13):136101CrossRef
212.
Zurück zum Zitat Loffler D, Uhlrich JJ, Baron M, Yang B, Yu X, Lichtenstein L, Heinke L, Buchner C, Heyde M, Shaikhutdinov S, Freund HJ, Wlodarczyk R, Sierka M, Sauer J (2010) Growth and structure of crystalline silica sheet on Ru(0001). Phys Rev Lett 105(14):146104CrossRef Loffler D, Uhlrich JJ, Baron M, Yang B, Yu X, Lichtenstein L, Heinke L, Buchner C, Heyde M, Shaikhutdinov S, Freund HJ, Wlodarczyk R, Sierka M, Sauer J (2010) Growth and structure of crystalline silica sheet on Ru(0001). Phys Rev Lett 105(14):146104CrossRef
213.
Zurück zum Zitat Lichtenstein L, Heyde M, Freund HJ (2012) Atomic arrangement in two-dimensional silica: from crystalline to vitreous structures. J Phys Chem C 116(38):20426–20432CrossRef Lichtenstein L, Heyde M, Freund HJ (2012) Atomic arrangement in two-dimensional silica: from crystalline to vitreous structures. J Phys Chem C 116(38):20426–20432CrossRef
214.
Zurück zum Zitat Majzik Z, Tchalala MR, Svec M, Hapala P, Enriquez H, Kara A, Mayne AJ, Dujardin G, Jelinek P, Oughaddou H (2013) Combined AFM and STM measurements of a silicene sheet grown on the Ag(111) surface. J Phys Condens Matter 25(22):225301CrossRef Majzik Z, Tchalala MR, Svec M, Hapala P, Enriquez H, Kara A, Mayne AJ, Dujardin G, Jelinek P, Oughaddou H (2013) Combined AFM and STM measurements of a silicene sheet grown on the Ag(111) surface. J Phys Condens Matter 25(22):225301CrossRef
215.
Zurück zum Zitat Sun ZX, Hamalainen SK, Sainio J, Lahtinen J, Vanmaekelbergh D, Liljeroth P (2011) Topographic and electronic contrast of the graphene moire on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy. Phys Rev B 83(8):081415CrossRef Sun ZX, Hamalainen SK, Sainio J, Lahtinen J, Vanmaekelbergh D, Liljeroth P (2011) Topographic and electronic contrast of the graphene moire on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy. Phys Rev B 83(8):081415CrossRef
216.
Zurück zum Zitat Boneschanscher MP, van der Lit J, Sun ZX, Swart I, Liljeroth P, Vanmaekelbergh D (2012) Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. ACS Nano 6(11):10216–10221CrossRef Boneschanscher MP, van der Lit J, Sun ZX, Swart I, Liljeroth P, Vanmaekelbergh D (2012) Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. ACS Nano 6(11):10216–10221CrossRef
217.
Zurück zum Zitat Hamalainen SK, Boneschanscher MP, Jacobse PH, Swart I, Pussi K, Moritz W, Lahtinen J, Liljeroth P, Sainio J (2013) Structure and local variations of the graphene moire on Ir(111). Phys Rev B 88(20):6CrossRef Hamalainen SK, Boneschanscher MP, Jacobse PH, Swart I, Pussi K, Moritz W, Lahtinen J, Liljeroth P, Sainio J (2013) Structure and local variations of the graphene moire on Ir(111). Phys Rev B 88(20):6CrossRef
218.
Zurück zum Zitat Dedkov Y, Voloshina E (2014) Multichannel scanning probe microscopy and spectroscopy of graphene moire structures. Phys Chem Chem Phys 16(9):3894–3908CrossRef Dedkov Y, Voloshina E (2014) Multichannel scanning probe microscopy and spectroscopy of graphene moire structures. Phys Chem Chem Phys 16(9):3894–3908CrossRef
219.
Zurück zum Zitat Fukui K, Onishi H, Iwasawa Y (1997) Imaging of individual formate ions adsorbed on TiO2(110) surface by non-contact atomic force microscopy. Chem Phys Lett 280(3–4):296–301CrossRef Fukui K, Onishi H, Iwasawa Y (1997) Imaging of individual formate ions adsorbed on TiO2(110) surface by non-contact atomic force microscopy. Chem Phys Lett 280(3–4):296–301CrossRef
220.
Zurück zum Zitat Rahe P, Nimmrich M, Nefedov A, Naboka M, Woll C, Kuhnle A (2009) Transition of molecule orientation during adsorption of terephthalic acid on rutile TiO2(110). J Phys Chem C 113(40):17471–17478CrossRef Rahe P, Nimmrich M, Nefedov A, Naboka M, Woll C, Kuhnle A (2009) Transition of molecule orientation during adsorption of terephthalic acid on rutile TiO2(110). J Phys Chem C 113(40):17471–17478CrossRef
221.
Zurück zum Zitat Schutte J, Bechstein R, Rahe P, Rohlfing M, Kuhnle A, Langhals H (2009) Imaging perylene derivatives on rutile TiO2(110) by noncontact atomic force microscopy. Phys Rev B 79(4):045428CrossRef Schutte J, Bechstein R, Rahe P, Rohlfing M, Kuhnle A, Langhals H (2009) Imaging perylene derivatives on rutile TiO2(110) by noncontact atomic force microscopy. Phys Rev B 79(4):045428CrossRef
222.
Zurück zum Zitat Loske F, Bechstein R, Schutte J, Ostendorf F, Reichling M, Kuhnle A (2009) Growth of ordered C60 islands on TiO2(110). Nanotechnology 20(6):065606CrossRef Loske F, Bechstein R, Schutte J, Ostendorf F, Reichling M, Kuhnle A (2009) Growth of ordered C60 islands on TiO2(110). Nanotechnology 20(6):065606CrossRef
223.
Zurück zum Zitat Fremy S, Schwarz A, Lammle K, Prosenc M, Wiesendanger R (2009) The monomer-to-dimer transition and bimodal growth of Co-salen on NaCl(001): a high resolution atomic force microscopy study. Nanotechnology 20(40):405608CrossRef Fremy S, Schwarz A, Lammle K, Prosenc M, Wiesendanger R (2009) The monomer-to-dimer transition and bimodal growth of Co-salen on NaCl(001): a high resolution atomic force microscopy study. Nanotechnology 20(40):405608CrossRef
224.
Zurück zum Zitat Lammle K, Trevethan T, Schwarz A, Watkins M, Shluger A, Wiesendanger R (2010) Unambiguous determination of the adsorption geometry of a metal-organic complex on a bulk insulator. Nano Lett 10(8):2965–2971CrossRef Lammle K, Trevethan T, Schwarz A, Watkins M, Shluger A, Wiesendanger R (2010) Unambiguous determination of the adsorption geometry of a metal-organic complex on a bulk insulator. Nano Lett 10(8):2965–2971CrossRef
225.
Zurück zum Zitat Pawlak R, Kawai S, Fremy S, Glatzel T, Meyer E (2011) Atomic-scale mechanical properties of orientated C(60) molecules revealed by noncontact atomic force microscopy. ACS Nano 5(8):6349–6354CrossRef Pawlak R, Kawai S, Fremy S, Glatzel T, Meyer E (2011) Atomic-scale mechanical properties of orientated C(60) molecules revealed by noncontact atomic force microscopy. ACS Nano 5(8):6349–6354CrossRef
226.
Zurück zum Zitat Pawlak R, Kawai S, Fremy S, Glatzel T, Meyer E (2012) High-resolution imaging of C60 molecules using tuning-fork-based non-contact atomic force microscopy. J Phys Condens Matter 24(8):084005CrossRef Pawlak R, Kawai S, Fremy S, Glatzel T, Meyer E (2012) High-resolution imaging of C60 molecules using tuning-fork-based non-contact atomic force microscopy. J Phys Condens Matter 24(8):084005CrossRef
227.
Zurück zum Zitat Such B, Trevethan T, Glatzel T, Kawai S, Zimmerli L, Meyer E, Shluger AL, Amijs CHM, de Mendoza P, Echavarren AM (2010) Functionalized truxenes: adsorption and diffusion of single molecules on the KBr(001) surface. ACS Nano 4(6):3429–3439CrossRef Such B, Trevethan T, Glatzel T, Kawai S, Zimmerli L, Meyer E, Shluger AL, Amijs CHM, de Mendoza P, Echavarren AM (2010) Functionalized truxenes: adsorption and diffusion of single molecules on the KBr(001) surface. ACS Nano 4(6):3429–3439CrossRef
228.
Zurück zum Zitat Pawlak R, Fremy S, Kawai S, Glatzel T, Fang HJ, Fendt LA, Diederich F, Meyer E (2012) Directed rotations of single porphyrin molecules controlled by localized force spectroscopy. ACS Nano 6(7):6318–6324CrossRef Pawlak R, Fremy S, Kawai S, Glatzel T, Fang HJ, Fendt LA, Diederich F, Meyer E (2012) Directed rotations of single porphyrin molecules controlled by localized force spectroscopy. ACS Nano 6(7):6318–6324CrossRef
229.
Zurück zum Zitat Sasahara A, Uetsuka H, Onishi H (2001) NC-AFM topography of HCOO and CH(3)COO molecules co-adsorbed on TiO(2)(110). Appl Phys Mater Sci Process 72:S101–S103CrossRef Sasahara A, Uetsuka H, Onishi H (2001) NC-AFM topography of HCOO and CH(3)COO molecules co-adsorbed on TiO(2)(110). Appl Phys Mater Sci Process 72:S101–S103CrossRef
230.
Zurück zum Zitat Gritschneder S, Iwasawa Y, Reichling M (2007) Strong adhesion of water to CeO2(111). Nanotechnology 18(4):044025CrossRef Gritschneder S, Iwasawa Y, Reichling M (2007) Strong adhesion of water to CeO2(111). Nanotechnology 18(4):044025CrossRef
231.
Zurück zum Zitat Burke SA, Mativetsky JM, Fostner S, Grutter P (2007) C60 on alkali halides: epitaxy and morphology studied by noncontact AFM. Phys Rev B 76(3):035419CrossRef Burke SA, Mativetsky JM, Fostner S, Grutter P (2007) C60 on alkali halides: epitaxy and morphology studied by noncontact AFM. Phys Rev B 76(3):035419CrossRef
232.
Zurück zum Zitat Burke SA, Ledue JM, Topple JM, Fostner S, Grutter P (2009) Relating the functional properties of an organic semiconductor to molecular structure by nc-AFM. Adv Mater 21(20):2029–2033CrossRef Burke SA, Ledue JM, Topple JM, Fostner S, Grutter P (2009) Relating the functional properties of an organic semiconductor to molecular structure by nc-AFM. Adv Mater 21(20):2029–2033CrossRef
233.
Zurück zum Zitat Gotsmann B, Seidel C, Anczykowski B, Fuchs H (1999) Conservative and dissipative tip-sample interaction forces probed with dynamic AFM. Phys Rev B 60(15):11051–11061CrossRef Gotsmann B, Seidel C, Anczykowski B, Fuchs H (1999) Conservative and dissipative tip-sample interaction forces probed with dynamic AFM. Phys Rev B 60(15):11051–11061CrossRef
234.
Zurück zum Zitat Lantz MA, Hoffmann R, Foster AS, Baratoff A, Hug HJ, Hidber HR, Guntherodt HJ (2006) Site-specific force-distance characteristics on NaCl(001): measurements versus atomistic simulations. Phys Rev B 74(24):245426CrossRef Lantz MA, Hoffmann R, Foster AS, Baratoff A, Hug HJ, Hidber HR, Guntherodt HJ (2006) Site-specific force-distance characteristics on NaCl(001): measurements versus atomistic simulations. Phys Rev B 74(24):245426CrossRef
235.
Zurück zum Zitat Hoffmann R, Barth C, Foster AS, Shluger AL, Hug HJ, Guntherodt HJ, Nieminen RM, Reichling M (2005) Measuring site-specific cluster-surface bond formation. J Am Chem Soc 127(50):17863–17866CrossRef Hoffmann R, Barth C, Foster AS, Shluger AL, Hug HJ, Guntherodt HJ, Nieminen RM, Reichling M (2005) Measuring site-specific cluster-surface bond formation. J Am Chem Soc 127(50):17863–17866CrossRef
236.
Zurück zum Zitat Hembacher S, Giessibl FJ, Mannhart J, Quate CF (2005) Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite. Phys Rev Lett 94(5):056101CrossRef Hembacher S, Giessibl FJ, Mannhart J, Quate CF (2005) Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite. Phys Rev Lett 94(5):056101CrossRef
237.
Zurück zum Zitat Albers BJ, Schwendemann TC, Baykara MZ, Pilet N, Liebmann M, Altman EI, Schwarz UD (2009) Data acquisition and analysis procedures for high-resolution atomic force microscopy in three dimensions. Nanotechnology 20(26):264002CrossRef Albers BJ, Schwendemann TC, Baykara MZ, Pilet N, Liebmann M, Altman EI, Schwarz UD (2009) Data acquisition and analysis procedures for high-resolution atomic force microscopy in three dimensions. Nanotechnology 20(26):264002CrossRef
238.
Zurück zum Zitat Holscher H, Langkat SM, Schwarz A, Wiesendanger R (2002) Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy. Appl Phys Lett 81(23):4428–4430CrossRef Holscher H, Langkat SM, Schwarz A, Wiesendanger R (2002) Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy. Appl Phys Lett 81(23):4428–4430CrossRef
239.
Zurück zum Zitat Ashino M, Schwarz A, Holscher H, Schwarz UD, Wiesendanger R (2005) Interpretation of the atomic scale contrast obtained on graphite and single-walled carbon nanotubes in the dynamic mode of atomic force microscopy. Nanotechnology 16(3):S134–S137CrossRef Ashino M, Schwarz A, Holscher H, Schwarz UD, Wiesendanger R (2005) Interpretation of the atomic scale contrast obtained on graphite and single-walled carbon nanotubes in the dynamic mode of atomic force microscopy. Nanotechnology 16(3):S134–S137CrossRef
240.
Zurück zum Zitat Schwarz A, Holscher H, Langkat SM, Wiesendanger R (2003) Three-dimensional force field spectroscopy. AIP Conf Proc 696:68–78CrossRef Schwarz A, Holscher H, Langkat SM, Wiesendanger R (2003) Three-dimensional force field spectroscopy. AIP Conf Proc 696:68–78CrossRef
241.
Zurück zum Zitat Bhushan B (2002) Introduction to tribology. Wiley, New York Bhushan B (2002) Introduction to tribology. Wiley, New York
242.
Zurück zum Zitat Bhushan B (2005) Nanotribology and nanomechanics: an introduction. Springer, BerlinCrossRef Bhushan B (2005) Nanotribology and nanomechanics: an introduction. Springer, BerlinCrossRef
243.
Zurück zum Zitat Giessibl FJ, Herz M, Mannhart J (2002) Friction traced to the single atom. Proc Natl Acad Sci U S A 99(19):12006–12010CrossRef Giessibl FJ, Herz M, Mannhart J (2002) Friction traced to the single atom. Proc Natl Acad Sci U S A 99(19):12006–12010CrossRef
244.
Zurück zum Zitat Atabak M, Unverdi O, Ozer HO, Oral A (2009) Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement. Appl Surf Sci 256(5):1299–1303CrossRef Atabak M, Unverdi O, Ozer HO, Oral A (2009) Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement. Appl Surf Sci 256(5):1299–1303CrossRef
245.
Zurück zum Zitat Weymouth AJ, Meuer D, Mutombo P, Wutscher T, Ondracek M, Jelinek P, Giessibl FJ (2013) Atomic structure affects the directional dependence of friction. Phys Rev Lett 111(12):126103CrossRef Weymouth AJ, Meuer D, Mutombo P, Wutscher T, Ondracek M, Jelinek P, Giessibl FJ (2013) Atomic structure affects the directional dependence of friction. Phys Rev Lett 111(12):126103CrossRef
246.
Zurück zum Zitat Kawai S, Glatzel T, Koch S, Such B, Baratoff A, Meyer E (2010) Ultrasensitive detection of lateral atomic-scale interactions on graphite (0001) via bimodal dynamic force measurements. Phys Rev B 81(8):085420CrossRef Kawai S, Glatzel T, Koch S, Such B, Baratoff A, Meyer E (2010) Ultrasensitive detection of lateral atomic-scale interactions on graphite (0001) via bimodal dynamic force measurements. Phys Rev B 81(8):085420CrossRef
247.
Zurück zum Zitat Ternes M, Lutz CP, Hirjibehedin CF, Giessibl FJ, Heinrich AJ (2008) The force needed to move an atom on a surface. Science 319(5866):1066–1069CrossRef Ternes M, Lutz CP, Hirjibehedin CF, Giessibl FJ, Heinrich AJ (2008) The force needed to move an atom on a surface. Science 319(5866):1066–1069CrossRef
248.
Zurück zum Zitat Weymouth AJ, Hofmann T, Giessibl FJ (2013) Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343:1120–1122CrossRef Weymouth AJ, Hofmann T, Giessibl FJ (2013) Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343:1120–1122CrossRef
249.
Zurück zum Zitat Welker J, Giessibl FJ (2012) Revealing the angular symmetry of chemical bonds by atomic force microscopy. Science 336(6080):444–449CrossRef Welker J, Giessibl FJ (2012) Revealing the angular symmetry of chemical bonds by atomic force microscopy. Science 336(6080):444–449CrossRef
250.
Zurück zum Zitat Kimura K, Ido S, Oyabu N, Kobayashi K, Hirata Y, Imai T, Yamada H (2010) Visualizing water molecule distribution by atomic force microscopy. J Chem Phys 132(19):194705CrossRef Kimura K, Ido S, Oyabu N, Kobayashi K, Hirata Y, Imai T, Yamada H (2010) Visualizing water molecule distribution by atomic force microscopy. J Chem Phys 132(19):194705CrossRef
251.
Zurück zum Zitat Asakawa H, Yoshioka S, Nishimura K, Fukuma T (2012) Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force microscopy. ACS Nano 6(10):9013–9020CrossRef Asakawa H, Yoshioka S, Nishimura K, Fukuma T (2012) Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force microscopy. ACS Nano 6(10):9013–9020CrossRef
252.
Zurück zum Zitat Sugimoto Y, Jelinek P, Pou P, Abe M, Morita S, Perez R, Custance O (2007) Mechanism for room-temperature single-atom lateral manipulations on semiconductors using dynamic force microscopy. Phys Rev Lett 98(10):106104CrossRef Sugimoto Y, Jelinek P, Pou P, Abe M, Morita S, Perez R, Custance O (2007) Mechanism for room-temperature single-atom lateral manipulations on semiconductors using dynamic force microscopy. Phys Rev Lett 98(10):106104CrossRef
253.
Zurück zum Zitat Sugimoto Y, Pou P, Custance O, Jelinek P, Abe M, Perez R, Morita S (2008) Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322(5900):413–417CrossRef Sugimoto Y, Pou P, Custance O, Jelinek P, Abe M, Perez R, Morita S (2008) Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322(5900):413–417CrossRef
Metadaten
Titel
Noncontact Atomic Force Microscopy for Atomic-Scale Characterization of Material Surfaces
verfasst von
Mehmet Z. Baykara
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-44551-8_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.