Skip to main content

2019 | OriginalPaper | Buchkapitel

2. Nonequilibrium Effects on the Phase Interface

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The description of intense phase changes calls for the solution to the flow problem in the ambient spaces of evaporating (condensing) matter, as described by gas dynamic equations. The specific feature of an intense phase change lies in the formation near the condensed-phase surface (CPS) of the Knudsen layer of thickness of order of the mean free path of molecules. The existence of the Knudsen layer depends on the nonequilibrium character of evaporation (condensation) resulting in the anisotropy of the velocity distribution function (DF) near CPS. In this setting, the gas dynamic description becomes unjustified—the phenomenological gas parameters (temperature, pressure, density, velocity), as defined according to the conventional rules of statistical averaging, lose their macroscopic sense. Such a situation can be described at a simplified level with the help of an “imaginary experiment”. Assume that the Knudsen layer has hypothetical micrometers of pressure and temperature. Then their readings will not agree with the statistically averaged values, but will rather depend on the structure of a micrometer. Such anomalies disappear beyond the Knudsen layer, in the outer region, where the Navier–Stokes equations hold. The outer region is also called the “Navier–Stokes region”.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This implied their independence, which at this time was unclear to many researchers and required justification (which was done later).
 
2
Here it is assumed that the mass, momentum and energy flows in stationary state are equal through any plane parallel to the CPS.
 
Literatur
1.
Zurück zum Zitat Kogan MN (1995) Rarefied gas dynamics. Springer Kogan MN (1995) Rarefied gas dynamics. Springer
2.
Zurück zum Zitat Maxwell JC (1860) Illustrations of the dynamical theory of gases: part I. On the motions and collisions of perfectly elastic spheres. Philos Mag 19:19–32CrossRef Maxwell JC (1860) Illustrations of the dynamical theory of gases: part I. On the motions and collisions of perfectly elastic spheres. Philos Mag 19:19–32CrossRef
3.
Zurück zum Zitat Maxwell JC (1860) Illustrations of the dynamical theory of gases: part II. On the process of diffusion of two or more kinds of moving particles among one another. Philos Mag 20:21–37CrossRef Maxwell JC (1860) Illustrations of the dynamical theory of gases: part II. On the process of diffusion of two or more kinds of moving particles among one another. Philos Mag 20:21–37CrossRef
4.
Zurück zum Zitat Boltzmann L (1872) Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Wien Math. Naturwiss. Classe, vol 66, pp 275–370. English translation: Boltzmann L (2003) Further studies on the thermal equilibrium of gas molecules. In: The kinetic theory of gases. History of modern physical sciences, vol 1, pp 262–349 Boltzmann L (1872) Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Wien Math. Naturwiss. Classe, vol 66, pp 275–370. English translation: Boltzmann L (2003) Further studies on the thermal equilibrium of gas molecules. In: The kinetic theory of gases. History of modern physical sciences, vol 1, pp 262–349
5.
Zurück zum Zitat Hertz H (1882) Über die Verdünstung der Flüssigkeiten, inbesondere des Quecksilbers, im luftleeren Räume. Ann Phys Chem 17:177–200 Hertz H (1882) Über die Verdünstung der Flüssigkeiten, inbesondere des Quecksilbers, im luftleeren Räume. Ann Phys Chem 17:177–200
6.
Zurück zum Zitat Langmuir I (1913) Chemical reactions at very low pressures. II. The chemical cleanup of nitrogen in a tungsten lamp. J Am Chem Soc 35:931–945CrossRef Langmuir I (1913) Chemical reactions at very low pressures. II. The chemical cleanup of nitrogen in a tungsten lamp. J Am Chem Soc 35:931–945CrossRef
7.
Zurück zum Zitat Knudsen M (1934) The kinetic theory of gases. Methuen, LondonMATH Knudsen M (1934) The kinetic theory of gases. Methuen, LondonMATH
8.
Zurück zum Zitat Knacke O, Stranski I (1956) The mechanism of evaporation. Prog Met Phys 6:181–235CrossRef Knacke O, Stranski I (1956) The mechanism of evaporation. Prog Met Phys 6:181–235CrossRef
9.
Zurück zum Zitat Risch R (1933) Über die Kondensation von Quecksilber an einer vertikalen Wand. Helv Phys Acta 6(2):127–138 Risch R (1933) Über die Kondensation von Quecksilber an einer vertikalen Wand. Helv Phys Acta 6(2):127–138
10.
Zurück zum Zitat Schrage RW (1953) A theoretical study of interphase mass transfer. Columbia University Press, New York chap 3 Schrage RW (1953) A theoretical study of interphase mass transfer. Columbia University Press, New York chap 3
11.
Zurück zum Zitat Kucherov RY, Rikenglaz LE (1960) On hydrodynamic boundary conditions for evaporation and condensation. Sov Phys JETP 10(1):88–89MathSciNet Kucherov RY, Rikenglaz LE (1960) On hydrodynamic boundary conditions for evaporation and condensation. Sov Phys JETP 10(1):88–89MathSciNet
12.
Zurück zum Zitat Zhakhovsky VV, Anisimov SI (1997) Molecular-dynamics simulation of evaporation of a liquid. J Exp Theor Phys 84(4):734–745CrossRef Zhakhovsky VV, Anisimov SI (1997) Molecular-dynamics simulation of evaporation of a liquid. J Exp Theor Phys 84(4):734–745CrossRef
15.
Zurück zum Zitat Marek R, Straub J (2001) Analysis of the evaporation coefficient and the condensation coefficient of water. Int J Heat Mass Transf 44:39–53CrossRef Marek R, Straub J (2001) Analysis of the evaporation coefficient and the condensation coefficient of water. Int J Heat Mass Transf 44:39–53CrossRef
16.
Zurück zum Zitat Nagayama G, Tsuruta T (2003) A general expression for the condensation coefficient based on the transition state theory and molecular dynamics simulation. J Chem Phys 118(3):1392–1399CrossRef Nagayama G, Tsuruta T (2003) A general expression for the condensation coefficient based on the transition state theory and molecular dynamics simulation. J Chem Phys 118(3):1392–1399CrossRef
17.
Zurück zum Zitat Tsuruta T, Tanaka H, Masuoka T (1999) Condensation/evaporation coefficient and velocity distributions at liquid–vapor interface. Int J Heat Mass Transf 42:4107–4116CrossRef Tsuruta T, Tanaka H, Masuoka T (1999) Condensation/evaporation coefficient and velocity distributions at liquid–vapor interface. Int J Heat Mass Transf 42:4107–4116CrossRef
18.
Zurück zum Zitat Matsumoto M (1996) Molecular dynamics simulation of interphase transport at liquid surfaces. Fluid Phase Equilib 125:195–203CrossRef Matsumoto M (1996) Molecular dynamics simulation of interphase transport at liquid surfaces. Fluid Phase Equilib 125:195–203CrossRef
19.
Zurück zum Zitat Matsumoto M (1998) Molecular dynamics of fluid phase change. Fluid Phase Equilib 144:307–314CrossRef Matsumoto M (1998) Molecular dynamics of fluid phase change. Fluid Phase Equilib 144:307–314CrossRef
20.
Zurück zum Zitat Langmuir I (1916) The evaporation, condensation and reflection of molecules and the mechanism of adsorption. Phys Rev 8:149–176CrossRef Langmuir I (1916) The evaporation, condensation and reflection of molecules and the mechanism of adsorption. Phys Rev 8:149–176CrossRef
21.
Zurück zum Zitat Julin J, Shiraiwa M, Miles RE, Reid JP, Pöschl U, Riipinen I (2013) Mass accommodation of water: bridging the gap between molecular dynamics simulations and kinetic condensation models. J Phys Chem A 117(2):410–420CrossRef Julin J, Shiraiwa M, Miles RE, Reid JP, Pöschl U, Riipinen I (2013) Mass accommodation of water: bridging the gap between molecular dynamics simulations and kinetic condensation models. J Phys Chem A 117(2):410–420CrossRef
22.
Zurück zum Zitat Persad AH, Ward CA (2016) Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation. Chem Rev 116(14):7727–7767CrossRef Persad AH, Ward CA (2016) Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation. Chem Rev 116(14):7727–7767CrossRef
23.
Zurück zum Zitat Davis EJ (2006) A history and state-of-the-art of accommodation coefficients. Atmos Res 82:561–578CrossRef Davis EJ (2006) A history and state-of-the-art of accommodation coefficients. Atmos Res 82:561–578CrossRef
24.
Zurück zum Zitat Labuntsov DA (1967) An analysis of the processes of evaporation and condensation. High Temp 5(4):579–647 Labuntsov DA (1967) An analysis of the processes of evaporation and condensation. High Temp 5(4):579–647
25.
Zurück zum Zitat Muratova TM, Labuntsov DA (1969) Kinetic analysis of the processes of evaporation and condensation. High Temp 7(5):959–967 Muratova TM, Labuntsov DA (1969) Kinetic analysis of the processes of evaporation and condensation. High Temp 7(5):959–967
26.
Zurück zum Zitat Loyalka SK (1990) Slip and jump coefficients for rarefied gas flows: variational results for Lennard-Jones and n(r)–6 potentials. Phys A 163:813–821CrossRef Loyalka SK (1990) Slip and jump coefficients for rarefied gas flows: variational results for Lennard-Jones and n(r)–6 potentials. Phys A 163:813–821CrossRef
27.
Zurück zum Zitat Siewert E (2003) Heat transfer and evaporation/condensation problems based on the linearized Boltzmann equation. Eur J Mech B Fluids 22:391–408MathSciNetCrossRef Siewert E (2003) Heat transfer and evaporation/condensation problems based on the linearized Boltzmann equation. Eur J Mech B Fluids 22:391–408MathSciNetCrossRef
28.
Zurück zum Zitat Latyshev AV, Uvarova LA (2001) Mathematical modeling. Problems, methods, applications. Kluwer Academic/Plenum Publishers, New York, Moscow Latyshev AV, Uvarova LA (2001) Mathematical modeling. Problems, methods, applications. Kluwer Academic/Plenum Publishers, New York, Moscow
29.
Zurück zum Zitat Bond M, Struchtrup H (2004) Mean evaporation and condensation coefficient based on energy dependent condensation probability. Phys Rev E 70:061605CrossRef Bond M, Struchtrup H (2004) Mean evaporation and condensation coefficient based on energy dependent condensation probability. Phys Rev E 70:061605CrossRef
30.
Zurück zum Zitat Landau LD, Lifshitz EM (1987) Fluid mechanics. Butterworth-Heinemann Landau LD, Lifshitz EM (1987) Fluid mechanics. Butterworth-Heinemann
31.
Zurück zum Zitat Gusarov AV, Smurov I (2002) Gas-dynamic boundary conditions of evaporation and condensation: numerical analysis of the Knudsen layer. Phys Fluids 14(12):4242–4255MathSciNetCrossRef Gusarov AV, Smurov I (2002) Gas-dynamic boundary conditions of evaporation and condensation: numerical analysis of the Knudsen layer. Phys Fluids 14(12):4242–4255MathSciNetCrossRef
32.
Zurück zum Zitat Frezzotti A (2007) A numerical investigation of the steady evaporation of a polyatomic gas. Eur J Mech B Fluids 26:93–104MathSciNetCrossRef Frezzotti A (2007) A numerical investigation of the steady evaporation of a polyatomic gas. Eur J Mech B Fluids 26:93–104MathSciNetCrossRef
33.
Zurück zum Zitat Crout PD (1936) An application of kinetic theory to the problems of evaporation and sublimation of monatomic gases. J Math Phys 15:1–54CrossRef Crout PD (1936) An application of kinetic theory to the problems of evaporation and sublimation of monatomic gases. J Math Phys 15:1–54CrossRef
34.
Zurück zum Zitat Anisimov SI (1968) Vaporization of metal absorbing laser radiation. Sov Phys JETP 27(1):182–183 Anisimov SI (1968) Vaporization of metal absorbing laser radiation. Sov Phys JETP 27(1):182–183
35.
Zurück zum Zitat Labuntsov DA, Kryukov AP (1977) Intense evaporation processes. Therm Eng 4:8–11 Labuntsov DA, Kryukov AP (1977) Intense evaporation processes. Therm Eng 4:8–11
36.
Zurück zum Zitat Ytrehus T (1977) Theory and experiments on gas kinetics in evaporation. In: Potter JL (ed) Rarefied gas dynamics. Technical papers selected from the 10th international symposium on rarefied gas dynamics. Snowmass-at-Aspen, CO, July 1976. In: Progress in astronautics and aeronautics, vol 51, pp 1197–1212. American Institute of Aeronautics and Astronautics Ytrehus T (1977) Theory and experiments on gas kinetics in evaporation. In: Potter JL (ed) Rarefied gas dynamics. Technical papers selected from the 10th international symposium on rarefied gas dynamics. Snowmass-at-Aspen, CO, July 1976. In: Progress in astronautics and aeronautics, vol 51, pp 1197–1212. American Institute of Aeronautics and Astronautics
37.
Zurück zum Zitat Labuntsov DA, Krykov AP (1979) An analysis of intensive evaporation and condensation. Int J Heat Mass Transf 22:989–1002CrossRef Labuntsov DA, Krykov AP (1979) An analysis of intensive evaporation and condensation. Int J Heat Mass Transf 22:989–1002CrossRef
38.
Zurück zum Zitat Khight CJ (1979) Theoretical modeling of rapid surface vaporization with back pressure. AIAA J 17(5):519–523CrossRef Khight CJ (1979) Theoretical modeling of rapid surface vaporization with back pressure. AIAA J 17(5):519–523CrossRef
39.
Zurück zum Zitat Khight CJ (1982) Transient vaporization from a surface into vacuum. AIAA J 20(7):950–955CrossRef Khight CJ (1982) Transient vaporization from a surface into vacuum. AIAA J 20(7):950–955CrossRef
40.
Zurück zum Zitat Rose JW (2000) Accurate approximate equations for intensive sub-sonic evaporation. Int J Heat Mass Transf 43:3869–3875CrossRef Rose JW (2000) Accurate approximate equations for intensive sub-sonic evaporation. Int J Heat Mass Transf 43:3869–3875CrossRef
41.
Zurück zum Zitat Zudin YB (2015) Approximate kinetic analysis of intense evaporation. J Eng Phys Thermophys 88(4):1015–1022CrossRef Zudin YB (2015) Approximate kinetic analysis of intense evaporation. J Eng Phys Thermophys 88(4):1015–1022CrossRef
42.
Zurück zum Zitat Zudin YB (2015) The approximate kinetic analysis of strong condensation. Thermophys Aeromech 22(1):73–84CrossRef Zudin YB (2015) The approximate kinetic analysis of strong condensation. Thermophys Aeromech 22(1):73–84CrossRef
43.
Zurück zum Zitat Zudin YB (2016) Linear kinetic analysis of evaporation and condensations. Thermophys Aeromech 23(3):437–449CrossRef Zudin YB (2016) Linear kinetic analysis of evaporation and condensations. Thermophys Aeromech 23(3):437–449CrossRef
44.
Zurück zum Zitat Furry WH (1948) On the elementary explanation of diffusion phenomena in gases. Am J Phys 16:63–78CrossRef Furry WH (1948) On the elementary explanation of diffusion phenomena in gases. Am J Phys 16:63–78CrossRef
Metadaten
Titel
Nonequilibrium Effects on the Phase Interface
verfasst von
Yuri B. Zudin
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13815-8_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.