Skip to main content
Erschienen in: Wireless Personal Communications 4/2020

08.06.2020

Nonlinear Acoustic Echo Canceller to Combat Sigmoid-Type Nonlinearities Under Noisy Environment

verfasst von: Amit Kumar Kohli, Jashu Sharma

Erschienen in: Wireless Personal Communications | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a nonlinear-acoustic-echo-cancellation (NAEC) technique to tackle sigmoid-type nonlinearities under noisy environment. The nonlinear echo in acoustic systems is inevitable due to the inherent nonlinear characteristics of amplifiers and/or loudspeakers, which deteriorates the quality of speech as well as audio signal reception. Here, the sigmoid-type nonlinearity is modelled by incorporating two control parameters, which determine the shaping- and clipping-parameter values of the saturation curve at a particular room temperature. These control parameters are adjusted by utilizing the variable-step-size (VSS) least-mean-square (LMS) algorithm to enhance the convergence rate and tracking capability of presented NAEC. Furthermore, the impulse response of a room (indoor channel) in the acoustic echo path is modelled as a tap-delay-line finite-impulse-response filter, whose tap-coefficients are estimated by utilizing a modified recursive-least-squares (RLS) algorithm (involving the noise statistics) at the different values of signal-to-noise-ratio (SNR), when correlated as well as uncorrelated input signals are processed. Simulation results demonstrate the efficiency and efficacy of above mentioned adaptive NAEC technique using the VSS-LMS and modified RLS algorithms in terms of the high convergence rate as well as high value of echo-return-loss-enhancement (ERLE) factor. Both the elevating value of shaping-parameter (i.e., increasing nonlinearity level) and the alleviating value of SNR adversely affect the performance of all NAECs. However, the VSS-LMS and modified RLS algorithm based presented adaptive NAEC outperforms the traditional VSS-LMS and normalized-least-mean-square (NLMS) algorithm based NAEC under similar conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nollett, B.S., & Jones D.L. (1997). Nonlinear echo cancellation for hands-free speakerphones. In Proc. IEEE Workshop Nonlinear Signal Image Process. (NSIP), Mackinac Island, MI (pp. 1–5). Nollett, B.S., & Jones D.L. (1997). Nonlinear echo cancellation for hands-free speakerphones. In Proc. IEEE Workshop Nonlinear Signal Image Process. (NSIP), Mackinac Island, MI (pp. 1–5).
2.
Zurück zum Zitat Fu, J., & Zhu, W.-P. (2008). A nonlinear acoustic echo canceller using sigmoid transform in conjunction with RLS algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(10), 1056–1060.CrossRef Fu, J., & Zhu, W.-P. (2008). A nonlinear acoustic echo canceller using sigmoid transform in conjunction with RLS algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(10), 1056–1060.CrossRef
3.
Zurück zum Zitat Ahgren, P. (2005). Acoustic echo cancellation and doubletalk detection using estimated loudspeaker impulse. IEEE Transactions on Speech and Audio Processing, 13(6), 1231–1237.CrossRef Ahgren, P. (2005). Acoustic echo cancellation and doubletalk detection using estimated loudspeaker impulse. IEEE Transactions on Speech and Audio Processing, 13(6), 1231–1237.CrossRef
4.
Zurück zum Zitat Costa, J.-P., Lagrange, A., Arliaud, A. (2003). Acoustic echo cancellation using nonlinear cascade filters. In Proc. ICASSP, vol. 5, Hong Kong, China (pp. 389–392). Costa, J.-P., Lagrange, A., Arliaud, A. (2003). Acoustic echo cancellation using nonlinear cascade filters. In Proc. ICASSP, vol. 5, Hong Kong, China (pp. 389–392).
5.
Zurück zum Zitat Guerin, A., Faucon, G., & Bouquin-Jeannes, R. L. (2003). Nonlinear acoustic echo cancellation based on Volterra filters. IEEE Transactions on Speech and Audio Processing, 11(6), 672–683.CrossRef Guerin, A., Faucon, G., & Bouquin-Jeannes, R. L. (2003). Nonlinear acoustic echo cancellation based on Volterra filters. IEEE Transactions on Speech and Audio Processing, 11(6), 672–683.CrossRef
6.
Zurück zum Zitat Kuech, F., & Kellermann, W. (2004). Partitioned block frequency-domain adaptive second-order Volterra filter. IEEE Transactions on Signal Processing, 53(2), 564–575.MathSciNetMATHCrossRef Kuech, F., & Kellermann, W. (2004). Partitioned block frequency-domain adaptive second-order Volterra filter. IEEE Transactions on Signal Processing, 53(2), 564–575.MathSciNetMATHCrossRef
7.
Zurück zum Zitat Kuech, F., Mitnacht, A., Kellermann, W. (2005). Nonlinear acoustic echo cancellation using adaptive orthogonalized power filters. In Proc. IEEE ICASSP, vol. 3, Philadelphia, PA (pp. 105–108). Kuech, F., Mitnacht, A., Kellermann, W. (2005). Nonlinear acoustic echo cancellation using adaptive orthogonalized power filters. In Proc. IEEE ICASSP, vol. 3, Philadelphia, PA (pp. 105–108).
8.
Zurück zum Zitat Panicker, T. M., & Mathews, V. J. (1998). Parallel-cascade realizations and approximations of truncated Volterra systems. IEEE Transactions on Signal Processing, 46(10), 2829–2832.CrossRef Panicker, T. M., & Mathews, V. J. (1998). Parallel-cascade realizations and approximations of truncated Volterra systems. IEEE Transactions on Signal Processing, 46(10), 2829–2832.CrossRef
9.
Zurück zum Zitat Sentoni, G., & Altenberg, A. (2005). Nonlinear acoustic echo canceller with DABNET + FIR structure. In Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA (pp. 37–40). Sentoni, G., & Altenberg, A. (2005). Nonlinear acoustic echo canceller with DABNET + FIR structure. In Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA (pp. 37–40).
10.
Zurück zum Zitat Stenger, A., Trautmann, L., Rabenstein, R. (1999). Nonlinear acoustic echo cancellation with 2nd order adaptive Volterra filters. In Proc. IEEE ICASSP, vol. 2, Phoenix, USA (pp. 877–880). Stenger, A., Trautmann, L., Rabenstein, R. (1999). Nonlinear acoustic echo cancellation with 2nd order adaptive Volterra filters. In Proc. IEEE ICASSP, vol. 2, Phoenix, USA (pp. 877–880).
11.
Zurück zum Zitat Stenger, A., & Rabenstein, R. (1999). Adaptation of acoustic echo cancellers incorporation a memoryless nonlinearity. In Proc. IEEE IWAENC, Pocono Manor, PA (pp. 168 – 171). Stenger, A., & Rabenstein, R. (1999). Adaptation of acoustic echo cancellers incorporation a memoryless nonlinearity. In Proc. IEEE IWAENC, Pocono Manor, PA (pp. 168 – 171).
12.
Zurück zum Zitat Stenger, A., & Kellermann, W. (2000). Nonlinear acoustic echo cancellation with fast converging memoryless pre-processor. In Proc. International Conference on Acoustics, Speech, and Signal Processing. (ICASSP), vol. 2, Istanbul, Turkey (pp. II805–II808). Stenger, A., & Kellermann, W. (2000). Nonlinear acoustic echo cancellation with fast converging memoryless pre-processor. In Proc. International Conference on Acoustics, Speech, and Signal Processing. (ICASSP), vol. 2, Istanbul, Turkey (pp. II805–II808).
13.
Zurück zum Zitat Comminiello, D., Scarpiniti, M., Azpicueta-Ruiz, L. A., Garcia, J. A., & Uncini, A. (2013). Functional link adaptive filters for nonlinear acoustic echo cancellation. IEEE Transactions on Audio, Speech and Language Processing, 21(7), 1502–1512.CrossRef Comminiello, D., Scarpiniti, M., Azpicueta-Ruiz, L. A., Garcia, J. A., & Uncini, A. (2013). Functional link adaptive filters for nonlinear acoustic echo cancellation. IEEE Transactions on Audio, Speech and Language Processing, 21(7), 1502–1512.CrossRef
14.
Zurück zum Zitat Vaerenbergh, S.V., & Azpicueta-Ruiz, L.A. (2014). Kernel-based identification of Hammerstein systems for nonlinear acoustic echo cancellation. In Proc. IEEE ICASSP, vol. 1, Florence, Italy (pp. 3739–3743). Vaerenbergh, S.V., & Azpicueta-Ruiz, L.A. (2014). Kernel-based identification of Hammerstein systems for nonlinear acoustic echo cancellation. In Proc. IEEE ICASSP, vol. 1, Florence, Italy (pp. 3739–3743).
15.
Zurück zum Zitat Rai, A., & Kohli, A. K. (2015). Volterra filtering scheme using generalized variable step-size NLMS algorithm for nonlinear acoustic echo cancellation. Acta Acustica United with Acustica, 101(4), 821–828.CrossRef Rai, A., & Kohli, A. K. (2015). Volterra filtering scheme using generalized variable step-size NLMS algorithm for nonlinear acoustic echo cancellation. Acta Acustica United with Acustica, 101(4), 821–828.CrossRef
16.
Zurück zum Zitat Rai, A., & Kohli, A. K. (2014). Adaptive polynomial filtering using generalized variable step-size pth power (LMP) algorithm. Circuits, Systems and Signal Processing, 33(12), 3931–3947.CrossRef Rai, A., & Kohli, A. K. (2014). Adaptive polynomial filtering using generalized variable step-size pth power (LMP) algorithm. Circuits, Systems and Signal Processing, 33(12), 3931–3947.CrossRef
17.
Zurück zum Zitat Hamidia, M., & Amrouche A. (2019). Improving acoustic echo cancellation in hands-free communication systems. In Proc. ISPA, vol. 1, Mostaganem, Algeria (pp. 1–5). Hamidia, M., & Amrouche A. (2019). Improving acoustic echo cancellation in hands-free communication systems. In Proc. ISPA, vol. 1, Mostaganem, Algeria (pp. 1–5).
18.
Zurück zum Zitat Dai, H., & Zhu, W.-P. (2006). Compensation of loudspeaker nonlinearity in acoustic echo cancellation using raised-cosine function. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(11), 1190–1194.CrossRef Dai, H., & Zhu, W.-P. (2006). Compensation of loudspeaker nonlinearity in acoustic echo cancellation using raised-cosine function. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(11), 1190–1194.CrossRef
19.
Zurück zum Zitat Breining, C., Dreiscitel, P., Hansler, E., Mader, A., Nitsch, B., Puder, H., et al. (1999). Acoustic echo control: an application of very-high-order adaptive filters. IEEE Signal Processing Magazine, 16(4), 42–69.CrossRef Breining, C., Dreiscitel, P., Hansler, E., Mader, A., Nitsch, B., Puder, H., et al. (1999). Acoustic echo control: an application of very-high-order adaptive filters. IEEE Signal Processing Magazine, 16(4), 42–69.CrossRef
20.
Zurück zum Zitat Paleologu, C., Ciochina, S., & Benesty, J. (2008). Variable step-size NLMS algorithm for under-modeling acoustic echo cancellation. IEEE Signal Processing Letters, 15, 5–8.CrossRef Paleologu, C., Ciochina, S., & Benesty, J. (2008). Variable step-size NLMS algorithm for under-modeling acoustic echo cancellation. IEEE Signal Processing Letters, 15, 5–8.CrossRef
21.
Zurück zum Zitat Kohli, A. K., & Mehra, D. K. (2006). Tracking of time-varying channels using two-step LMS-type adaptive algorithm. IEEE Transactions on Signal Processing, 54(7), 2606–2615.MATHCrossRef Kohli, A. K., & Mehra, D. K. (2006). Tracking of time-varying channels using two-step LMS-type adaptive algorithm. IEEE Transactions on Signal Processing, 54(7), 2606–2615.MATHCrossRef
22.
Zurück zum Zitat Garg, H. K., & Kohli, A. K. (2017). Excision of ocular artifacts from EEG using NVFF-RLS adaptive algorithm. Circuits, Systems and Signal Processing, 36(1), 404–419.MATHCrossRef Garg, H. K., & Kohli, A. K. (2017). Excision of ocular artifacts from EEG using NVFF-RLS adaptive algorithm. Circuits, Systems and Signal Processing, 36(1), 404–419.MATHCrossRef
23.
Zurück zum Zitat Diniz, P. S. R. (2002). Adaptive filtering (2nd ed.). Norwell: Kluwer.MATH Diniz, P. S. R. (2002). Adaptive filtering (2nd ed.). Norwell: Kluwer.MATH
24.
Zurück zum Zitat Lee, K., Baek, Y., & Park, Y. (2015). Nonlinear acoustic echo cancellation using a nonlinear postprocessor with a linearly constrained affine projection algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(9), 881–885.CrossRef Lee, K., Baek, Y., & Park, Y. (2015). Nonlinear acoustic echo cancellation using a nonlinear postprocessor with a linearly constrained affine projection algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(9), 881–885.CrossRef
25.
Zurück zum Zitat Kuhn, E. V., Kolodziej, J. E., & Seara, R. (2014). Stochastic modeling of the NLMS algorithm for complex Gaussian input data and nonstationary environment. Digital Signal Processing, 30, 55–66.MathSciNetCrossRef Kuhn, E. V., Kolodziej, J. E., & Seara, R. (2014). Stochastic modeling of the NLMS algorithm for complex Gaussian input data and nonstationary environment. Digital Signal Processing, 30, 55–66.MathSciNetCrossRef
26.
Zurück zum Zitat Elko, G.W., Diethorn, E., Gansler, T. (2003). Room impulse response variation due to thermal fluctuation and its impact on acoustic echo cancellation. In Proc. IEEE IWAENC, Kyoto, Japan (pp. 67–70). Elko, G.W., Diethorn, E., Gansler, T. (2003). Room impulse response variation due to thermal fluctuation and its impact on acoustic echo cancellation. In Proc. IEEE IWAENC, Kyoto, Japan (pp. 67–70).
27.
Zurück zum Zitat Haykin, S. (1999). Neural networks (2nd ed.). Prentice-Hall: Pearson Education.MATH Haykin, S. (1999). Neural networks (2nd ed.). Prentice-Hall: Pearson Education.MATH
28.
Zurück zum Zitat Aboulnasr, T., & Mayyas, K. (1997). A robust variable step-size LMS-type algorithm: analysis and simulations. IEEE Transactions on Signal Processing, 45(3), 631–639.CrossRef Aboulnasr, T., & Mayyas, K. (1997). A robust variable step-size LMS-type algorithm: analysis and simulations. IEEE Transactions on Signal Processing, 45(3), 631–639.CrossRef
29.
Zurück zum Zitat Haykin, S. (1996). Adaptive filter theory (3rd ed.). Prentice-Hall: Englewood Cliffs.MATH Haykin, S. (1996). Adaptive filter theory (3rd ed.). Prentice-Hall: Englewood Cliffs.MATH
30.
Zurück zum Zitat Kwong, R. H., & Johnston, E. W. (1992). A variable step size LMS algorithm. IEEE Transactions on Signal Processing, 40(7), 1633–1642.MATHCrossRef Kwong, R. H., & Johnston, E. W. (1992). A variable step size LMS algorithm. IEEE Transactions on Signal Processing, 40(7), 1633–1642.MATHCrossRef
31.
Zurück zum Zitat Kohli, A. K., Rai, A., & Patel, M. K. (2011). Variable forgetting factor LS algorithm for polynomial channel model. ISRN Signal Processing, 915259, 1–4.MATHCrossRef Kohli, A. K., Rai, A., & Patel, M. K. (2011). Variable forgetting factor LS algorithm for polynomial channel model. ISRN Signal Processing, 915259, 1–4.MATHCrossRef
32.
Zurück zum Zitat Kohli, A. K., & Rai, A. (2013). Numeric variable forgetting factor RLS algorithm for second-order Volterra filtering. Circuits, System and Signal Processing, 32(1), 223–232.MathSciNetCrossRef Kohli, A. K., & Rai, A. (2013). Numeric variable forgetting factor RLS algorithm for second-order Volterra filtering. Circuits, System and Signal Processing, 32(1), 223–232.MathSciNetCrossRef
33.
Zurück zum Zitat Zhang, H., Tan, K., Wang, D. (2019). Deep learning for joint acoustic echo and noise cancellation with nonlinear distortions. In Proc. INTERSPEECH, vol. 1, Graz, Austria (pp. 15–19). Zhang, H., Tan, K., Wang, D. (2019). Deep learning for joint acoustic echo and noise cancellation with nonlinear distortions. In Proc. INTERSPEECH, vol. 1, Graz, Austria (pp. 15–19).
34.
Zurück zum Zitat Widrow, B., McCool, J. M., Larimore, M. G., & Johnson, C. R. (1976). Stationary and nonstationary learning characteristics of LMS adaptive filter. Proceedings of the IEEE, 64(8), 1151–1162.MathSciNetCrossRef Widrow, B., McCool, J. M., Larimore, M. G., & Johnson, C. R. (1976). Stationary and nonstationary learning characteristics of LMS adaptive filter. Proceedings of the IEEE, 64(8), 1151–1162.MathSciNetCrossRef
35.
Zurück zum Zitat Song, S., Lim, J. S., Baek, S. J., & Sung, K. M. (2002). Variable forgetting factor linear least squares algorithm for frequency selective fading channel estimation. IEEE Transactions on Vehicular Technology, 51(3), 613–616.CrossRef Song, S., Lim, J. S., Baek, S. J., & Sung, K. M. (2002). Variable forgetting factor linear least squares algorithm for frequency selective fading channel estimation. IEEE Transactions on Vehicular Technology, 51(3), 613–616.CrossRef
36.
Zurück zum Zitat Sunitha, T., & Malar, R. S. M. (2018). Nonlinear acoustic echo cancellation based on multichannel adaptive filters: a novel approach. Wireless Personal Communications, 102(4), 3269–3284.CrossRef Sunitha, T., & Malar, R. S. M. (2018). Nonlinear acoustic echo cancellation based on multichannel adaptive filters: a novel approach. Wireless Personal Communications, 102(4), 3269–3284.CrossRef
37.
Zurück zum Zitat Papoulis, A. (1991). Probability random variables and stochastic processes (3rd ed.). New York: McGraw-Hill.MATH Papoulis, A. (1991). Probability random variables and stochastic processes (3rd ed.). New York: McGraw-Hill.MATH
38.
Zurück zum Zitat Kapoor, D. S., & Kohli, A. K. (2015). Simulation of basis expansion model for channel fading using AR1 process. Wireless Personal Communications, 85(3), 791–798.CrossRef Kapoor, D. S., & Kohli, A. K. (2015). Simulation of basis expansion model for channel fading using AR1 process. Wireless Personal Communications, 85(3), 791–798.CrossRef
39.
Zurück zum Zitat Singh, S., & Kohli, A. K. (2014). Wireless fading paradigm for antenna array receiver for a disk-type cluster of scatterers. Circuits, Systems and Signal Processing, 33(4), 1231–1244.CrossRef Singh, S., & Kohli, A. K. (2014). Wireless fading paradigm for antenna array receiver for a disk-type cluster of scatterers. Circuits, Systems and Signal Processing, 33(4), 1231–1244.CrossRef
40.
Zurück zum Zitat Sukhumalwong, S., & Benjangkaprasert, C. (2006). Adaptive echo cancellation using variable step-size algorithm lattice filters. In Proceeding of IEEE TENCON Region 10 Conference, Hong Kong, China (pp. 1–4). Sukhumalwong, S., & Benjangkaprasert, C. (2006). Adaptive echo cancellation using variable step-size algorithm lattice filters. In Proceeding of IEEE TENCON Region 10 Conference, Hong Kong, China (pp. 1–4).
41.
Zurück zum Zitat Kapoor, D. S., & Kohli, A. K. (2018). Channel estimation and long-range prediction of fast fading channels for adaptive OFDM system. International Journal of Electronics, 105(9), 1451–1466.CrossRef Kapoor, D. S., & Kohli, A. K. (2018). Channel estimation and long-range prediction of fast fading channels for adaptive OFDM system. International Journal of Electronics, 105(9), 1451–1466.CrossRef
42.
Zurück zum Zitat Halimeh, M. M., Huemmer, C., & Kellermann, W. (2019). A neural network-based nonlinear acoustic echo canceller. IEEE Signal Processing Letters, 26(12), 1827–1831.CrossRef Halimeh, M. M., Huemmer, C., & Kellermann, W. (2019). A neural network-based nonlinear acoustic echo canceller. IEEE Signal Processing Letters, 26(12), 1827–1831.CrossRef
Metadaten
Titel
Nonlinear Acoustic Echo Canceller to Combat Sigmoid-Type Nonlinearities Under Noisy Environment
verfasst von
Amit Kumar Kohli
Jashu Sharma
Publikationsdatum
08.06.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07544-3

Weitere Artikel der Ausgabe 4/2020

Wireless Personal Communications 4/2020 Zur Ausgabe

Neuer Inhalt