Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2021

01.05.2021

Nonlinear interaction of elliptical q-Gaussian laser beams with plasmas with axial density ramp: effect of ponderomotive force

verfasst von: Naveen Gupta, Sandeep Kumar

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Theoretical investigation on optical self action effects of intense q-Gaussian laser beams interacting with collisionless plasmas with axial density ramp has been presented. Emphasis are put on investigating the dynamics of beam width and axial phase of the laser beam. Effect of the ellipticity of the cross section of the laser beam also has been incorporated. Using variational theory based on Lagrangian formulation nonlinear partial differential equation (P.D.E) governing the evolution of beam amplitude has been reduced to a set of coupled ordinary differential equations for the beam widths of the laser beam along the transverse directions. The evolution equation for the axial phase of the laser beam has been obtained by the Fourier transform of the amplitude structure of the laser beam from coordinate space to \((k_x, k_y)\) space. The differential equations so obtained have been solved numerically to envision the effect of laser-plasma parameters on the propagation dynamics of the laser beam.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V.: Self-focusing and diffraction of light in a nonlinear medium. Usp. Fiz. Nauk. 93, 609–636 (1967)CrossRef Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V.: Self-focusing and diffraction of light in a nonlinear medium. Usp. Fiz. Nauk. 93, 609–636 (1967)CrossRef
Zurück zum Zitat Anderson, D., Bonnedal, M.: Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105–109 (1979)ADSMathSciNetCrossRef Anderson, D., Bonnedal, M.: Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105–109 (1979)ADSMathSciNetCrossRef
Zurück zum Zitat Anderson, D., Bonnedal, M., Lisak, M.: Nonlinear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115–127 (1980)ADSCrossRef Anderson, D., Bonnedal, M., Lisak, M.: Nonlinear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115–127 (1980)ADSCrossRef
Zurück zum Zitat Askaryan, G.A.: Effects of the gradient of strong electromagnetic beam on electrons and atoms. Soviet Phys. JETP 15, 1088–1092 (1962) Askaryan, G.A.: Effects of the gradient of strong electromagnetic beam on electrons and atoms. Soviet Phys. JETP 15, 1088–1092 (1962)
Zurück zum Zitat Chiao, R.Y., Garmire, E., Townes, C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1965)ADSCrossRef Chiao, R.Y., Garmire, E., Townes, C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1965)ADSCrossRef
Zurück zum Zitat Cornolti, F., Lucchesi, M., Zambon, B.: Elliptic Gaussian beam selffocusing in nonlinear media. Opt. Commun. 75, 129–135 (1990)ADSCrossRef Cornolti, F., Lucchesi, M., Zambon, B.: Elliptic Gaussian beam selffocusing in nonlinear media. Opt. Commun. 75, 129–135 (1990)ADSCrossRef
Zurück zum Zitat Deutsch, C., Furukawa, H., Mima, K., Murakami, M., Nishihara, K.: Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483–2486 (1996)ADSCrossRef Deutsch, C., Furukawa, H., Mima, K., Murakami, M., Nishihara, K.: Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483–2486 (1996)ADSCrossRef
Zurück zum Zitat El Sayed, A., El Badawy, N., Mohamed, S., El Halafawy, F.Z.: Self-focusing of powerful CO2-laser beams in collisional plasmas. J. Opt. Soc. Am. 72, 1393–1397 (1982)ADSCrossRef El Sayed, A., El Badawy, N., Mohamed, S., El Halafawy, F.Z.: Self-focusing of powerful CO2-laser beams in collisional plasmas. J. Opt. Soc. Am. 72, 1393–1397 (1982)ADSCrossRef
Zurück zum Zitat Feit, M.D., Fleck, J.A.: Self-trapping of a laser beam in a cylindrical plasma column. Appl. Phys. Lett. 28, 121–124 (1976)ADSCrossRef Feit, M.D., Fleck, J.A.: Self-trapping of a laser beam in a cylindrical plasma column. Appl. Phys. Lett. 28, 121–124 (1976)ADSCrossRef
Zurück zum Zitat Feng, S., Winful, H.G.: Physical origin of the Gouy phase shift. Opt. Lett. 26, 485–487 (2001)ADSCrossRef Feng, S., Winful, H.G.: Physical origin of the Gouy phase shift. Opt. Lett. 26, 485–487 (2001)ADSCrossRef
Zurück zum Zitat Gupta, N., Kumar, S.: Linear and nonlinear propagation characteristics of multi-Gaussian laser beams. Chin. Phys. B 29, 114210 (2020)ADSCrossRef Gupta, N., Kumar, S.: Linear and nonlinear propagation characteristics of multi-Gaussian laser beams. Chin. Phys. B 29, 114210 (2020)ADSCrossRef
Zurück zum Zitat Gupta, N., Kumar, S.: Generation of second harmonics of q-Gaussian laser beams in collisional plasma with upward density ramp. Laser Phys. 30, 066003 (2020)ADSCrossRef Gupta, N., Kumar, S.: Generation of second harmonics of q-Gaussian laser beams in collisional plasma with upward density ramp. Laser Phys. 30, 066003 (2020)ADSCrossRef
Zurück zum Zitat Gupta, D.N., Hur, M.S., Hwang, I., Suk, H., Sharma, A.K.: Plasma density ramp for relativistic self-focusing of an intense laser. J. Opt. Soc. Am. B 24, 1155–1159 (2007)ADSCrossRef Gupta, D.N., Hur, M.S., Hwang, I., Suk, H., Sharma, A.K.: Plasma density ramp for relativistic self-focusing of an intense laser. J. Opt. Soc. Am. B 24, 1155–1159 (2007)ADSCrossRef
Zurück zum Zitat Gupta, D.N., Islam, M.R., Jang, D.G., Suk, H., Jaroszynski, D.A.: Self-focusing of a high-intensity laser in a collisional plasma under weak relativistic-ponderomotive nonlinearity. Phys. Plasmas 20, 123103 (2013)ADSCrossRef Gupta, D.N., Islam, M.R., Jang, D.G., Suk, H., Jaroszynski, D.A.: Self-focusing of a high-intensity laser in a collisional plasma under weak relativistic-ponderomotive nonlinearity. Phys. Plasmas 20, 123103 (2013)ADSCrossRef
Zurück zum Zitat Habibi, M., Ghamari, F.: Significant enhancement in self-focusing of high-power laser beam through dense plasmas by ramp density profile. J. Opt. Soc. Am. B 32, 1429–1434 (2015)ADSCrossRef Habibi, M., Ghamari, F.: Significant enhancement in self-focusing of high-power laser beam through dense plasmas by ramp density profile. J. Opt. Soc. Am. B 32, 1429–1434 (2015)ADSCrossRef
Zurück zum Zitat Hariharan, P., Robinson, P.A.: The gouy phase shift as a geometrical quantum effect. J. Mod. Opt. 43, 219–221 (1996)ADSMathSciNetMATH Hariharan, P., Robinson, P.A.: The gouy phase shift as a geometrical quantum effect. J. Mod. Opt. 43, 219–221 (1996)ADSMathSciNetMATH
Zurück zum Zitat Hora, H.: Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882–886 (1975)ADSCrossRef Hora, H.: Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882–886 (1975)ADSCrossRef
Zurück zum Zitat Kelley, P.L.: Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008 (1966)ADSCrossRef Kelley, P.L.: Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008 (1966)ADSCrossRef
Zurück zum Zitat Khalkhal, E., Tavirani, M.R., Zali, M.R., Akbari, Z.: The evaluation of laser application in surgery: a review article. J. Lasers Med. Sci. 10, S104–S111 (2019)CrossRef Khalkhal, E., Tavirani, M.R., Zali, M.R., Akbari, Z.: The evaluation of laser application in surgery: a review article. J. Lasers Med. Sci. 10, S104–S111 (2019)CrossRef
Zurück zum Zitat Konar, S., Sengupta, A.: Propagation of an elliptic Gaussian laser beam in a medium with saturable nonlinearity. J. Opt. Soc. Am. B 11, 1644–1646 (1994)ADSCrossRef Konar, S., Sengupta, A.: Propagation of an elliptic Gaussian laser beam in a medium with saturable nonlinearity. J. Opt. Soc. Am. B 11, 1644–1646 (1994)ADSCrossRef
Zurück zum Zitat Kumar, H., Aggarwal, M., Richa, Gill, T.S.: Self-focusing of an elliptic-Gaussian laser beam in relativistic ponderomotive plasma using a ramp density profile. J. Opt. Soc. Am. B 35, 1635–1641 (2018)ADSCrossRef Kumar, H., Aggarwal, M., Richa, Gill, T.S.: Self-focusing of an elliptic-Gaussian laser beam in relativistic ponderomotive plasma using a ramp density profile. J. Opt. Soc. Am. B 35, 1635–1641 (2018)ADSCrossRef
Zurück zum Zitat Kurniawan, K.H., Tjia, M., Kagawa, K.: Review of laser-induced plasma, its mechanism, and application to quantitative analysis of hydrogen and deuterium. Appl. Spectrosc. Rev. 49, 323–434 (2014)ADSCrossRef Kurniawan, K.H., Tjia, M., Kagawa, K.: Review of laser-induced plasma, its mechanism, and application to quantitative analysis of hydrogen and deuterium. Appl. Spectrosc. Rev. 49, 323–434 (2014)ADSCrossRef
Zurück zum Zitat Leduc, M., Dugue, J., Simone, J.: Laser cooling, trapping, and Bose–Einstein condensation of atoms and molecules. Phys. Today 71, 37–42 (2018) Leduc, M., Dugue, J., Simone, J.: Laser cooling, trapping, and Bose–Einstein condensation of atoms and molecules. Phys. Today 71, 37–42 (2018)
Zurück zum Zitat Nakatsutsumi, M., Davies, J.R., Kodama, R., Green, J.S., Lancaster, K.L., Akli, K.U., Beg, F.N., Chen, S.N., Clark, D., Freeman, R.R., Gregory, C.D., Habara, H., Heathcote, R., Hey, D.S., Highbarger, K., Jaanimagi, P., Key, M.H., Krushelnick, K., Ma, T., MacPhee, A., MacKinnon, A.J., Nakamura, H., Stephens, R.B., Storm, M., Tampo, M., Theobald, W., Van Woerkom, L., Weber, R.L., Wei, M.S., Woolsey, N.C., Norreys, P.A.: Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser. New J. Phys. 10, 043046 (2008)CrossRef Nakatsutsumi, M., Davies, J.R., Kodama, R., Green, J.S., Lancaster, K.L., Akli, K.U., Beg, F.N., Chen, S.N., Clark, D., Freeman, R.R., Gregory, C.D., Habara, H., Heathcote, R., Hey, D.S., Highbarger, K., Jaanimagi, P., Key, M.H., Krushelnick, K., Ma, T., MacPhee, A., MacKinnon, A.J., Nakamura, H., Stephens, R.B., Storm, M., Tampo, M., Theobald, W., Van Woerkom, L., Weber, R.L., Wei, M.S., Woolsey, N.C., Norreys, P.A.: Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser. New J. Phys. 10, 043046 (2008)CrossRef
Zurück zum Zitat Patel, P.K., Key, M.H., Mackinnon, A.J., Berry, R., Borghesi, M., Chambers, D.M., Chen, H., Clarke, R., Damian, C., Eagleton, R., Freeman, R., Glenzer, S., Gregori, G., Heathcote, R., Hey, D., Izumi, N., Kar, S., King, J., Nikroo, A., Niles, A., Park, H.S., Pasley, J., Patel, N., Shepherd, R., Snavely, R.A., Steinman, D., Stoeckl, C., Storm, M., Theobald, W., Town, R., Van Maren, R., Wilks, S.C., Zhang, B.: Integrated laser-target interaction experiments on the RAL petawatt laser. Plasma Phys. Control. Fusion 47, B833–B840 (2005)CrossRef Patel, P.K., Key, M.H., Mackinnon, A.J., Berry, R., Borghesi, M., Chambers, D.M., Chen, H., Clarke, R., Damian, C., Eagleton, R., Freeman, R., Glenzer, S., Gregori, G., Heathcote, R., Hey, D., Izumi, N., Kar, S., King, J., Nikroo, A., Niles, A., Park, H.S., Pasley, J., Patel, N., Shepherd, R., Snavely, R.A., Steinman, D., Stoeckl, C., Storm, M., Theobald, W., Town, R., Van Maren, R., Wilks, S.C., Zhang, B.: Integrated laser-target interaction experiments on the RAL petawatt laser. Plasma Phys. Control. Fusion 47, B833–B840 (2005)CrossRef
Zurück zum Zitat Pathak, N., Agarwal, P.C., Gill, T.S., Kaur, S.: Characteristics of spatiotemporal dynamics of a quadruple Gaussian laser beam in a relativistic ponderomotive magnetized plasma. J. Opt. Soc. Am. B 37, 2892–2900 (2020)ADSCrossRef Pathak, N., Agarwal, P.C., Gill, T.S., Kaur, S.: Characteristics of spatiotemporal dynamics of a quadruple Gaussian laser beam in a relativistic ponderomotive magnetized plasma. J. Opt. Soc. Am. B 37, 2892–2900 (2020)ADSCrossRef
Zurück zum Zitat Patil, S.D., Takale, M.V.: Self-focusing of Gaussian laser beam in weakly relativistic and ponderomotive regime using upward ramp of plasma density. Phys. Plasmas 20, 083101 (2013)ADSCrossRef Patil, S.D., Takale, M.V.: Self-focusing of Gaussian laser beam in weakly relativistic and ponderomotive regime using upward ramp of plasma density. Phys. Plasmas 20, 083101 (2013)ADSCrossRef
Zurück zum Zitat Purohit, G., Gaur, B., Rawat, P.: Propagation of two intense cosh-Gaussian laser beams in plasma in the relativistic-ponderomotive regime. J. Opt. Soc. Am. B 33, 1716–1722 (2016)ADSCrossRef Purohit, G., Gaur, B., Rawat, P.: Propagation of two intense cosh-Gaussian laser beams in plasma in the relativistic-ponderomotive regime. J. Opt. Soc. Am. B 33, 1716–1722 (2016)ADSCrossRef
Zurück zum Zitat Roso, N.A., Moreira, R.C., Oliveira, J.B.: High power laser weapons and operational implications. J. Aerosp. Technol. Manag. 6, 231–236 (2014)CrossRef Roso, N.A., Moreira, R.C., Oliveira, J.B.: High power laser weapons and operational implications. J. Aerosp. Technol. Manag. 6, 231–236 (2014)CrossRef
Zurück zum Zitat Sharma, A., Kourakis, I.: Spatial evolution of a q-Gaussian laser beam in relativistic plasma. Laser Part. Beams 28, 479–489 (2010)ADSCrossRef Sharma, A., Kourakis, I.: Spatial evolution of a q-Gaussian laser beam in relativistic plasma. Laser Part. Beams 28, 479–489 (2010)ADSCrossRef
Zurück zum Zitat Singh, A., Gupta, N.: Higher harmonic generation by self-focused q-Gaussian laser beam in preformed collisionless plasma channel. Laser Part. Beams 32, 621–629 (2014)ADSCrossRef Singh, A., Gupta, N.: Higher harmonic generation by self-focused q-Gaussian laser beam in preformed collisionless plasma channel. Laser Part. Beams 32, 621–629 (2014)ADSCrossRef
Zurück zum Zitat Singh, T., Kaul, S.S.: Self-focusing and self-phase modulation of elliptic Gaussian laser beam in a graded Kerr-medium. Indian J. Pure Appl. Phys. 37, 794–797 (1999) Singh, T., Kaul, S.S.: Self-focusing and self-phase modulation of elliptic Gaussian laser beam in a graded Kerr-medium. Indian J. Pure Appl. Phys. 37, 794–797 (1999)
Zurück zum Zitat Singh, A., Walia, K.: Self-focusing of Gaussian laser beam through collisionless plasmas and its effect on second harmonic generation. J. Fusion Energy 30, 555–560 (2011)ADSCrossRef Singh, A., Walia, K.: Self-focusing of Gaussian laser beam through collisionless plasmas and its effect on second harmonic generation. J. Fusion Energy 30, 555–560 (2011)ADSCrossRef
Zurück zum Zitat Sodha, M.S., Ghatak, A.K., Tripathi, V.K.: In: Wolf, E. (ed.) Progress in Optics, vol. 13, p. 169–175. North Holland, Amsterdam (1976) Sodha, M.S., Ghatak, A.K., Tripathi, V.K.: In: Wolf, E. (ed.) Progress in Optics, vol. 13, p. 169–175. North Holland, Amsterdam (1976)
Zurück zum Zitat Spiers, B.T., Hill, M.P., Brown, C., Ceurvorst, L., Ratan, N., Savin, A.F., Allan, P., Floyd, E., Fyrth, J., Hobbs, L., James, S., Luis, J., Ramsay, M., Sircombe, N., Skidmore, J., Aboushelbaya, R., Mayr, M.W., Paddock, R., Wang, R.H.W., Norreys, P.A.: Whole-beam self-focusing in fusion-relevant plasma. Philos. Trans. R. Soc. A. 379, 20200159 (2021)ADSCrossRef Spiers, B.T., Hill, M.P., Brown, C., Ceurvorst, L., Ratan, N., Savin, A.F., Allan, P., Floyd, E., Fyrth, J., Hobbs, L., James, S., Luis, J., Ramsay, M., Sircombe, N., Skidmore, J., Aboushelbaya, R., Mayr, M.W., Paddock, R., Wang, R.H.W., Norreys, P.A.: Whole-beam self-focusing in fusion-relevant plasma. Philos. Trans. R. Soc. A. 379, 20200159 (2021)ADSCrossRef
Zurück zum Zitat Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. 43, 267–270 (1979)ADS Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. 43, 267–270 (1979)ADS
Zurück zum Zitat Tsallis, C.: Nonadditive entropy and nonextensive statistical mechanics—an overview after 20 years. Braz. J. Phys. 39, 337–356 (2009)ADSCrossRef Tsallis, C.: Nonadditive entropy and nonextensive statistical mechanics—an overview after 20 years. Braz. J. Phys. 39, 337–356 (2009)ADSCrossRef
Zurück zum Zitat Wang, Y., Liang, Y., Yao, J., Yuan, C., Zhou, Z.: Nonlinear propagation characteristics of multi-Gaussian beams in collisionless plasmas. J. Opt. Soc. Am. B 35, 3088–3093 (2018)ADSCrossRef Wang, Y., Liang, Y., Yao, J., Yuan, C., Zhou, Z.: Nonlinear propagation characteristics of multi-Gaussian beams in collisionless plasmas. J. Opt. Soc. Am. B 35, 3088–3093 (2018)ADSCrossRef
Zurück zum Zitat Yadav, M., Gupta, D.N., Sharma, S.C.: Electron plasma wave excitation by a q-Gaussian laser beam and subsequent electron acceleration. Phys. Plasmas 27, 093106 (2020)CrossRef Yadav, M., Gupta, D.N., Sharma, S.C.: Electron plasma wave excitation by a q-Gaussian laser beam and subsequent electron acceleration. Phys. Plasmas 27, 093106 (2020)CrossRef
Metadaten
Titel
Nonlinear interaction of elliptical q-Gaussian laser beams with plasmas with axial density ramp: effect of ponderomotive force
verfasst von
Naveen Gupta
Sandeep Kumar
Publikationsdatum
01.05.2021
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2021
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-021-02905-z

Weitere Artikel der Ausgabe 5/2021

Optical and Quantum Electronics 5/2021 Zur Ausgabe

Neuer Inhalt