Skip to main content
Erschienen in: Continuum Mechanics and Thermodynamics 2/2021

05.08.2020 | Original Article

Nonlinear stress-driven nonlocal formulation of Timoshenko beams made of FGMs

verfasst von: M. Roghani, H. Rouhi

Erschienen in: Continuum Mechanics and Thermodynamics | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Motivated by the paradoxical results obtained from the differential nonlocal elasticity theory in some cases (e.g., bending and vibration problems of cantilevers), several attempts have been recently made to develop nonlocal beam models based on the integral (original) formulation of Eringen’s nonlocal theory. These models can be classified into two main groups including strain- and stress-driven ones which have the capability of capturing the softening and hardening behaviors of material caused by nanoscale (nonlocal) effects, respectively. In the present paper, a novel stress-driven nonlocal formulation is developed for the nonlinear analysis of Timoshenko beams made of functionally graded materials. To this end, the governing equations are first derived in the context of integral form of stress-driven nonlocal model. The proposed model can be used for arbitrary kernel functions, and the paradox related to cantilever is resolved by it. The governing equations of stress-driven model in differential form together with corresponding constitutive boundary conditions are also derived. The Timoshenko beam under various end conditions is considered as the problem under study whose nonlinear static bending is analyzed. Furthermore, the generalized differential quadrature method is employed in the solution procedure. The effects of nonlocal parameter, FG index, length-to-thickness ratio and nonlinearity on the deflection of fully clamped, fully simply supported, clamped–simply supported and clamped–free beams are investigated. The presented formulation and results may be helpful in understanding nonlocal phenomena in nano-electro-mechanical systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)MATHCrossRef Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)MATHCrossRef
4.
Zurück zum Zitat Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)MATHCrossRef Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)MATHCrossRef
5.
Zurück zum Zitat Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)CrossRef Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)CrossRef
6.
Zurück zum Zitat Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)ADSMATHCrossRef Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)ADSMATHCrossRef
10.
Zurück zum Zitat Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)MATHCrossRef Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)MATHCrossRef
12.
Zurück zum Zitat Eringen, A.C.: Theory of nonlocal electromagnetic elastic solids. J. Math. Phys. 14, 733–740 (1973)ADSMATHCrossRef Eringen, A.C.: Theory of nonlocal electromagnetic elastic solids. J. Math. Phys. 14, 733–740 (1973)ADSMATHCrossRef
13.
Zurück zum Zitat Eringen, A.C.: Theory of nonlocal thermoelasticity. Int. J. Eng. Sci. 12, 1063–1077 (1974)MATHCrossRef Eringen, A.C.: Theory of nonlocal thermoelasticity. Int. J. Eng. Sci. 12, 1063–1077 (1974)MATHCrossRef
14.
Zurück zum Zitat Eringen, A.C., Kim, B.S.: Stress concentration at the tip of crack. Mech. Res. Commun. 1, 233–237 (1974)CrossRef Eringen, A.C., Kim, B.S.: Stress concentration at the tip of crack. Mech. Res. Commun. 1, 233–237 (1974)CrossRef
16.
Zurück zum Zitat Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)MATH Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)MATH
17.
Zurück zum Zitat Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)ADSCrossRef Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)ADSCrossRef
18.
Zurück zum Zitat Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)CrossRef Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)CrossRef
19.
Zurück zum Zitat Sudak, L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)ADSCrossRef Sudak, L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)ADSCrossRef
20.
Zurück zum Zitat Wang, Q., Varadan, V.K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater. Struct. 15, 659–666 (2006)ADSCrossRef Wang, Q., Varadan, V.K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater. Struct. 15, 659–666 (2006)ADSCrossRef
21.
Zurück zum Zitat Rouhi, H., Ansari, R.: Nonlocal analytical Flugge shell model for axial buckling of double-walled carbon nanotubes with different end conditions. NANO 7, 1250018 (2012)CrossRef Rouhi, H., Ansari, R.: Nonlocal analytical Flugge shell model for axial buckling of double-walled carbon nanotubes with different end conditions. NANO 7, 1250018 (2012)CrossRef
22.
Zurück zum Zitat Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)CrossRef Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)CrossRef
23.
Zurück zum Zitat Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32, 83–100 (2016)ADSMathSciNetMATHCrossRef Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32, 83–100 (2016)ADSMathSciNetMATHCrossRef
24.
Zurück zum Zitat Zhang, D., Lei, Y., Shen, Z.: Effect of longitudinal magnetic field on vibration response of double-walled carbon nanotubes embedded in viscoelastic medium. Acta Mech. Solida Sin. 31, 187–206 (2018) CrossRef Zhang, D., Lei, Y., Shen, Z.: Effect of longitudinal magnetic field on vibration response of double-walled carbon nanotubes embedded in viscoelastic medium. Acta Mech. Solida Sin. 31, 187–206 (2018) CrossRef
25.
Zurück zum Zitat Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40, 4109–4128 (2016)MathSciNetMATHCrossRef Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40, 4109–4128 (2016)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Ansari, R., Rouhi, H., Sahmani, S.: Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int. J. Mech. Sci. 53, 786–792 (2011)CrossRef Ansari, R., Rouhi, H., Sahmani, S.: Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int. J. Mech. Sci. 53, 786–792 (2011)CrossRef
27.
Zurück zum Zitat Shen, H.S., Xu, Y.M., Zhang, C.L.: Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity. Comput. Meth. Appl. Mech. Eng. 267, 458–470 (2013)ADSMathSciNetMATHCrossRef Shen, H.S., Xu, Y.M., Zhang, C.L.: Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity. Comput. Meth. Appl. Mech. Eng. 267, 458–470 (2013)ADSMathSciNetMATHCrossRef
28.
29.
Zurück zum Zitat Ansari, R., Shahabodini, A., Rouhi, H.: A nonlocal plate model incorporating interatomic potentials for vibrations of graphene with arbitrary edge conditions. Curr. Appl. Phys. 15, 1062–1069 (2015)ADSCrossRef Ansari, R., Shahabodini, A., Rouhi, H.: A nonlocal plate model incorporating interatomic potentials for vibrations of graphene with arbitrary edge conditions. Curr. Appl. Phys. 15, 1062–1069 (2015)ADSCrossRef
30.
Zurück zum Zitat Wang, Q.: Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301 (2005)ADSCrossRef Wang, Q.: Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301 (2005)ADSCrossRef
31.
Zurück zum Zitat Lu, P., Lee, H.P., Lu, C.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99, 073510 (2006)ADSCrossRef Lu, P., Lee, H.P., Lu, C.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99, 073510 (2006)ADSCrossRef
32.
Zurück zum Zitat Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 023511 (2008)ADSCrossRef Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 023511 (2008)ADSCrossRef
33.
Zurück zum Zitat Wang, Q., Liew, K.M.: Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A 363, 236–242 (2007)ADSCrossRef Wang, Q., Liew, K.M.: Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A 363, 236–242 (2007)ADSCrossRef
34.
Zurück zum Zitat Abazari, A.M., Safavi, S.M., Rezazadeh, G., Villanueva, L.G.: Modelling the size effects on the mechanical properties of micro/nano structures. Sensors 15, 28543–28562 (2015)CrossRef Abazari, A.M., Safavi, S.M., Rezazadeh, G., Villanueva, L.G.: Modelling the size effects on the mechanical properties of micro/nano structures. Sensors 15, 28543–28562 (2015)CrossRef
35.
Zurück zum Zitat Challamel, N., Zhang, Z., Wang, C.M., Reddy, J.N., Wang, Q., Michelitsch, T., Collet, B.: On non-conservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from discrete-based approach. Arch. Appl. Mech. 84, 1275–1292 (2014)ADSMATHCrossRef Challamel, N., Zhang, Z., Wang, C.M., Reddy, J.N., Wang, Q., Michelitsch, T., Collet, B.: On non-conservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from discrete-based approach. Arch. Appl. Mech. 84, 1275–1292 (2014)ADSMATHCrossRef
36.
37.
Zurück zum Zitat Fernández-Sáez, J., Zaera, R., Loya, J.A., Reddy, J.N.: Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)MathSciNetMATHCrossRef Fernández-Sáez, J., Zaera, R., Loya, J.A., Reddy, J.N.: Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Zhu, X., Li, L.: Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 78, 87–96 (2017)CrossRef Zhu, X., Li, L.: Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 78, 87–96 (2017)CrossRef
39.
Zurück zum Zitat Norouzzadeh, A., Ansari, R.: Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Phys. E 88, 194–200 (2017)CrossRef Norouzzadeh, A., Ansari, R.: Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Phys. E 88, 194–200 (2017)CrossRef
40.
Zurück zum Zitat Norouzzadeh, A., Ansari, R., Rouhi, H.: Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach. Appl. Phys. A 123, 330 (2017)ADSCrossRef Norouzzadeh, A., Ansari, R., Rouhi, H.: Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach. Appl. Phys. A 123, 330 (2017)ADSCrossRef
41.
Zurück zum Zitat Tuna, M., Kirca, M.: Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 105, 80–92 (2016)MathSciNetMATHCrossRef Tuna, M., Kirca, M.: Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 105, 80–92 (2016)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Koutsoumaris, C.C., Eptaimeros, K.G., Tsamasphyros, G.J.: A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)CrossRef Koutsoumaris, C.C., Eptaimeros, K.G., Tsamasphyros, G.J.: A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)CrossRef
43.
Zurück zum Zitat Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)MathSciNetMATHCrossRef Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)MathSciNetMATHCrossRef
44.
Zurück zum Zitat Romano, G., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B 114, 184–188 (2017)CrossRef Romano, G., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B 114, 184–188 (2017)CrossRef
45.
Zurück zum Zitat Romano, G., Barretta, R., Diaco, M.: On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 131–132, 490–499 (2017)CrossRef Romano, G., Barretta, R., Diaco, M.: On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 131–132, 490–499 (2017)CrossRef
46.
Zurück zum Zitat Romano, G., Barretta, R., Diaco, M., Marotti de Sciarra, F.: Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams. Int. J. Mech. Sci. 121, 151–156 (2017)CrossRef Romano, G., Barretta, R., Diaco, M., Marotti de Sciarra, F.: Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams. Int. J. Mech. Sci. 121, 151–156 (2017)CrossRef
47.
Zurück zum Zitat Romano, G., Luciano, R., Barretta, R., Diaco, M.: Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Contin. Mech. Thermodyn. 30, 641–655 (2018)MathSciNetMATHCrossRef Romano, G., Luciano, R., Barretta, R., Diaco, M.: Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Contin. Mech. Thermodyn. 30, 641–655 (2018)MathSciNetMATHCrossRef
48.
Zurück zum Zitat Apuzzo, A., Barretta, R., Luciano, R., Marotti de Sciarra, F., Penna, R.: Free vibrations of Bernoulli–Euler nano-beams by the stress-driven nonlocal integral model. Compos. Part B Eng. 123, 105–111 (2017)CrossRef Apuzzo, A., Barretta, R., Luciano, R., Marotti de Sciarra, F., Penna, R.: Free vibrations of Bernoulli–Euler nano-beams by the stress-driven nonlocal integral model. Compos. Part B Eng. 123, 105–111 (2017)CrossRef
49.
Zurück zum Zitat Faraji Oskouie, M., Ansari, R., Rouhi, H.: Bending of Euler–Bernoulli nanobeams based on the strain- and stress-driven nonlocal integral models: a numerical approach. Acta Mech. Sin. 34, 871–882 (2018)ADSMathSciNetMATHCrossRef Faraji Oskouie, M., Ansari, R., Rouhi, H.: Bending of Euler–Bernoulli nanobeams based on the strain- and stress-driven nonlocal integral models: a numerical approach. Acta Mech. Sin. 34, 871–882 (2018)ADSMathSciNetMATHCrossRef
50.
Zurück zum Zitat Faraji Oskouie, M., Ansari, R., Rouhi, H.: A numerical study on the buckling and vibration of nanobeams based on the strain- and stress-driven nonlocal integral models. Int. J. Comput. Mater. Sci. Eng. 7, 1850016 (2018)MATH Faraji Oskouie, M., Ansari, R., Rouhi, H.: A numerical study on the buckling and vibration of nanobeams based on the strain- and stress-driven nonlocal integral models. Int. J. Comput. Mater. Sci. Eng. 7, 1850016 (2018)MATH
51.
Zurück zum Zitat Faraji Oskouie, M., Ansari, R., Rouhi, H.: Stress-driven nonlocal and strain gradient formulations of Timoshenko nanobeams. Eur. Phys. J. Plus 133, 336 (2018)MATHCrossRef Faraji Oskouie, M., Ansari, R., Rouhi, H.: Stress-driven nonlocal and strain gradient formulations of Timoshenko nanobeams. Eur. Phys. J. Plus 133, 336 (2018)MATHCrossRef
52.
Zurück zum Zitat Faraji Oskouie, M., Norouzzadeh, A., Ansari, R., Rouhi, H.: Bending of small-scale Timoshenko beams based on the integral/differential nonlocal–micropolar elasticity theory: a finite element approach. Appl. Math. Mech. Eng. Ed. 40, 767–782 (2019)MathSciNetMATHCrossRef Faraji Oskouie, M., Norouzzadeh, A., Ansari, R., Rouhi, H.: Bending of small-scale Timoshenko beams based on the integral/differential nonlocal–micropolar elasticity theory: a finite element approach. Appl. Math. Mech. Eng. Ed. 40, 767–782 (2019)MathSciNetMATHCrossRef
53.
Zurück zum Zitat Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M., Mansour, A.: Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position. Appl. Math. Comput. 235, 512–529 (2014)MathSciNetMATH Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M., Mansour, A.: Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position. Appl. Math. Comput. 235, 512–529 (2014)MathSciNetMATH
54.
Zurück zum Zitat Barretta, R., Luciano, R., Marotti-de-Sciarra, F., Ruta, G.: Stress-driven nonlocal integral model for Timoshenko elastic nano-beams. Eur. J. Mech. A Solids 72, 275–286 (2018)ADSMathSciNetMATHCrossRef Barretta, R., Luciano, R., Marotti-de-Sciarra, F., Ruta, G.: Stress-driven nonlocal integral model for Timoshenko elastic nano-beams. Eur. J. Mech. A Solids 72, 275–286 (2018)ADSMathSciNetMATHCrossRef
55.
Zurück zum Zitat Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics. OUP, Oxford (2014)MATHCrossRef Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics. OUP, Oxford (2014)MATHCrossRef
Metadaten
Titel
Nonlinear stress-driven nonlocal formulation of Timoshenko beams made of FGMs
verfasst von
M. Roghani
H. Rouhi
Publikationsdatum
05.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Continuum Mechanics and Thermodynamics / Ausgabe 2/2021
Print ISSN: 0935-1175
Elektronische ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-020-00906-z

Weitere Artikel der Ausgabe 2/2021

Continuum Mechanics and Thermodynamics 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.