Skip to main content
Erschienen in: Acta Mechanica 12/2019

10.08.2019 | Original Paper

Nonlinear vibration analysis of graphene sheets resting on Winkler–Pasternak elastic foundation using an atomistic-continuum multiscale model

verfasst von: Y. Gholami, A. Shahabodini, R. Ansari, H. Rouhi

Erschienen in: Acta Mechanica | Ausgabe 12/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on the higher-order Cauchy–Born (HCB) rule, an atomistic-continuum multiscale model is proposed to address the large-amplitude vibration problem of graphene sheets (GSs) embedded in an elastic medium under various kinds of boundary conditions. By HCB, a linkage is established between the deformation of the atomic structure and macroscopical deformation gradients without any parameter fitting. The elastic foundation is formulated according to the Winkler–Pasternak model which considers both normal pressure and transverse shear stress effects. The weak form of nonlinear governing equations is derived via a variational approach, namely based on the variational differential quadrature (VDQ) method and Hamilton’s principle. In order to solve the obtained equations, a numerical scheme is adopted in which the generalized differential quadrature (GDQ) method together with a numerical Galerkin technique is utilized for discretization in the space domain, and the time-periodic discretization method is used to discretize in the time domain. The effects of the arrangement of atoms, the Winkler and Pasternak coefficients of the elastic foundation, and boundary conditions on the frequency–response curves of GSs are illustrated. It is revealed that the nonlinear effects on the response of GSs with larger size in armchair direction are less important.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
2.
Zurück zum Zitat Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef
3.
Zurück zum Zitat Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008)CrossRef Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008)CrossRef
6.
Zurück zum Zitat Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRef Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRef
7.
8.
Zurück zum Zitat Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)MATHCrossRef Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)MATHCrossRef
9.
Zurück zum Zitat Ansari, R., Arash, B., Rouhi, H.: Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Compos. Struct. 93, 2419–2429 (2011)CrossRef Ansari, R., Arash, B., Rouhi, H.: Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Compos. Struct. 93, 2419–2429 (2011)CrossRef
10.
Zurück zum Zitat Ansari, R., Rouhi, H.: Explicit analytical expressions for the critical buckling stresses in a monolayer graphene sheet based on nonlocal elasticity. Solid State Commun. 152, 56–59 (2012)CrossRef Ansari, R., Rouhi, H.: Explicit analytical expressions for the critical buckling stresses in a monolayer graphene sheet based on nonlocal elasticity. Solid State Commun. 152, 56–59 (2012)CrossRef
11.
Zurück zum Zitat Farajpour, A., Dehghany, M., Shahidi, A.R.: Surface and nonlocal effects on the axisymmetric buckling of circular graphene sheets in thermal environment. Compos. B 50, 333–343 (2013)CrossRef Farajpour, A., Dehghany, M., Shahidi, A.R.: Surface and nonlocal effects on the axisymmetric buckling of circular graphene sheets in thermal environment. Compos. B 50, 333–343 (2013)CrossRef
12.
Zurück zum Zitat Zhang, L.W., Zhang, Y., Liew, K.M.: Vibration analysis of quadrilateral graphene sheets subjected to an in-plane magnetic field based on nonlocal elasticity theory. Compos. B 118, 96–103 (2017)CrossRef Zhang, L.W., Zhang, Y., Liew, K.M.: Vibration analysis of quadrilateral graphene sheets subjected to an in-plane magnetic field based on nonlocal elasticity theory. Compos. B 118, 96–103 (2017)CrossRef
13.
Zurück zum Zitat Jalaei, M.H., Civalek, O.: A nonlocal strain gradient refined plate theory for dynamic instability of embedded graphene sheet including thermal effects. Compos. Struct. 220, 209–220 (2019)CrossRef Jalaei, M.H., Civalek, O.: A nonlocal strain gradient refined plate theory for dynamic instability of embedded graphene sheet including thermal effects. Compos. Struct. 220, 209–220 (2019)CrossRef
14.
Zurück zum Zitat Kumar, D., Heinrich, C., Waas, A.M.: Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories. J. Appl. Phys. 103, 073521 (2008)CrossRef Kumar, D., Heinrich, C., Waas, A.M.: Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories. J. Appl. Phys. 103, 073521 (2008)CrossRef
15.
Zurück zum Zitat Rouhi, H., Ansari, R.: Nonlocal analytical Flugge shell model for axial buckling of double-walled carbon nanotubes with different end conditions. NANO 7, 1250018 (2012)CrossRef Rouhi, H., Ansari, R.: Nonlocal analytical Flugge shell model for axial buckling of double-walled carbon nanotubes with different end conditions. NANO 7, 1250018 (2012)CrossRef
16.
Zurück zum Zitat Sun, Y.G., Yao, X.H., Liang, Y.J., Han, Q.: Nonlocal beam model for axial buckling of carbon nanotubes with surface effect. EPL 99, 56007 (2012)CrossRef Sun, Y.G., Yao, X.H., Liang, Y.J., Han, Q.: Nonlocal beam model for axial buckling of carbon nanotubes with surface effect. EPL 99, 56007 (2012)CrossRef
17.
Zurück zum Zitat Ansari, R., Rouhi, H.: Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocal Flugge shell theory. ASME J. Eng. Mater. Technol. 134, 011008 (2012)CrossRef Ansari, R., Rouhi, H.: Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocal Flugge shell theory. ASME J. Eng. Mater. Technol. 134, 011008 (2012)CrossRef
18.
Zurück zum Zitat Ghorbanpour Arani, A., Roudbari, M.A.: Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Films 542, 232–241 (2013)CrossRef Ghorbanpour Arani, A., Roudbari, M.A.: Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Films 542, 232–241 (2013)CrossRef
19.
Zurück zum Zitat Ansari, R., Rouhi, H., Arash, B.: Vibrational analysis of double-walled carbon nanotubes based on the nonlocal Donnell shell theory via a new numerical approach. Iran. J. Sci. Technol. Trans. Mech. Eng. 37, 91–105 (2013) Ansari, R., Rouhi, H., Arash, B.: Vibrational analysis of double-walled carbon nanotubes based on the nonlocal Donnell shell theory via a new numerical approach. Iran. J. Sci. Technol. Trans. Mech. Eng. 37, 91–105 (2013)
20.
Zurück zum Zitat Kiani, K., Roshan, M.: Nonlocal dynamic response of double-nanotube-systems for delivery of lagged-inertial-nanoparticles. Int. J. Mech. Sci. 152, 576–595 (2019)CrossRef Kiani, K., Roshan, M.: Nonlocal dynamic response of double-nanotube-systems for delivery of lagged-inertial-nanoparticles. Int. J. Mech. Sci. 152, 576–595 (2019)CrossRef
21.
Zurück zum Zitat Rouhi, H., Ansari, R., Darvizeh, M.: Size-dependent free vibration analysis of nanoshells based on the surface stress elasticity. Appl. Math. Model. 40, 3128–3140 (2016)MathSciNetMATHCrossRef Rouhi, H., Ansari, R., Darvizeh, M.: Size-dependent free vibration analysis of nanoshells based on the surface stress elasticity. Appl. Math. Model. 40, 3128–3140 (2016)MathSciNetMATHCrossRef
22.
Zurück zum Zitat Rouhi, H., Ansari, R., Darvizeh, M.: Nonlinear free vibration analysis of cylindrical nanoshells based on the Ru model accounting for surface stress effect. Int. J. Mech. Sci. 113, 1–9 (2016)MATHCrossRef Rouhi, H., Ansari, R., Darvizeh, M.: Nonlinear free vibration analysis of cylindrical nanoshells based on the Ru model accounting for surface stress effect. Int. J. Mech. Sci. 113, 1–9 (2016)MATHCrossRef
23.
Zurück zum Zitat Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32, 83–100 (2016)MathSciNetMATHCrossRef Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32, 83–100 (2016)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Ansari, R., Rouhi, H., Sahmani, S.: Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int. J. Mech. Sci. 53, 786–792 (2011)CrossRef Ansari, R., Rouhi, H., Sahmani, S.: Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int. J. Mech. Sci. 53, 786–792 (2011)CrossRef
25.
Zurück zum Zitat Batra, R.C., Gupta, S.S.: Wall thickness and radial breathing modes of single-walled carbon nanotubes. ASME J. Appl. Mech. 75, 061010 (2008)CrossRef Batra, R.C., Gupta, S.S.: Wall thickness and radial breathing modes of single-walled carbon nanotubes. ASME J. Appl. Mech. 75, 061010 (2008)CrossRef
26.
Zurück zum Zitat Shah, P.H., Batra, R.C.: In-plane elastic moduli of covalently functionalized single-wall carbon nanotubes. Comput. Mater. Sci. 83, 349–361 (2014)CrossRef Shah, P.H., Batra, R.C.: In-plane elastic moduli of covalently functionalized single-wall carbon nanotubes. Comput. Mater. Sci. 83, 349–361 (2014)CrossRef
27.
Zurück zum Zitat Arroyo, M., Belytschko, T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50, 1941–1977 (2002)MathSciNetMATHCrossRef Arroyo, M., Belytschko, T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50, 1941–1977 (2002)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Zhang, P., Huang, Y., Geubelle, P.H., Klein, P.A., Hwang, K.C.: The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int. J. Solid Struct. 39, 3893–3906 (2002)MATHCrossRef Zhang, P., Huang, Y., Geubelle, P.H., Klein, P.A., Hwang, K.C.: The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int. J. Solid Struct. 39, 3893–3906 (2002)MATHCrossRef
29.
Zurück zum Zitat Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule. Phys. Rev. B 69, 115415 (2004)CrossRef Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule. Phys. Rev. B 69, 115415 (2004)CrossRef
30.
Zurück zum Zitat Guo, X., Wang, J.B., Zhang, H.W.: Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy–Born rule. Int. J. Solids Struct. 43, 1276–1290 (2006)MATHCrossRef Guo, X., Wang, J.B., Zhang, H.W.: Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy–Born rule. Int. J. Solids Struct. 43, 1276–1290 (2006)MATHCrossRef
31.
Zurück zum Zitat Stefan, H.: Numerical validation of a concurrent atomistic-continuum multiscale method and its application to the buckling analysis of carbon nanotubes. Comput. Methods Appl. Mech. Eng. 270, 220–246 (2014)MathSciNetMATHCrossRef Stefan, H.: Numerical validation of a concurrent atomistic-continuum multiscale method and its application to the buckling analysis of carbon nanotubes. Comput. Methods Appl. Mech. Eng. 270, 220–246 (2014)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Sun, Y., Liew, K.M.: Mesh-free simulation of single-walled carbon nanotubes using higher order Cauchy–Born rule. Comput. Mater. Sci. 42, 444–452 (2008)CrossRef Sun, Y., Liew, K.M.: Mesh-free simulation of single-walled carbon nanotubes using higher order Cauchy–Born rule. Comput. Mater. Sci. 42, 444–452 (2008)CrossRef
33.
Zurück zum Zitat Sun, Y., Liew, K.M.: The buckling of single-walled carbon nanotubes upon bending: the higher order gradient continuum and mesh-free method. Comput. Methods Appl. Mech. Eng. 197, 3001–3013 (2008)MATHCrossRef Sun, Y., Liew, K.M.: The buckling of single-walled carbon nanotubes upon bending: the higher order gradient continuum and mesh-free method. Comput. Methods Appl. Mech. Eng. 197, 3001–3013 (2008)MATHCrossRef
34.
Zurück zum Zitat Sun, Y., Liew, K.M.: Application of the higher-order Cauchy-Born rule in mesh-free continuum and multiscale simulation of carbon nanotubes. Int. J. Numer. Methods Eng. 75, 1238–1258 (2008)MATHCrossRef Sun, Y., Liew, K.M.: Application of the higher-order Cauchy-Born rule in mesh-free continuum and multiscale simulation of carbon nanotubes. Int. J. Numer. Methods Eng. 75, 1238–1258 (2008)MATHCrossRef
35.
Zurück zum Zitat Ansari, R., Shahabodini, A., Rouhi, H., Alipour, A.: Thermal buckling analysis of multi-walled carbon nanotubes through a nonlocal shell theory incorporating interatomic potentials. J. Therm. Stress. 36, 56–70 (2013)CrossRef Ansari, R., Shahabodini, A., Rouhi, H., Alipour, A.: Thermal buckling analysis of multi-walled carbon nanotubes through a nonlocal shell theory incorporating interatomic potentials. J. Therm. Stress. 36, 56–70 (2013)CrossRef
36.
Zurück zum Zitat Ansari, R., Shahabodini, A., Rouhi, H.: Prediction of the biaxial buckling and vibration behavior of graphene via a nonlocal atomistic-based plate theory. Compos. Struct. 95, 88–94 (2013)CrossRef Ansari, R., Shahabodini, A., Rouhi, H.: Prediction of the biaxial buckling and vibration behavior of graphene via a nonlocal atomistic-based plate theory. Compos. Struct. 95, 88–94 (2013)CrossRef
37.
Zurück zum Zitat Ansari, R., Shahabodini, A., Rouhi, H.: A thickness-independent nonlocal shell model for describing the stability behavior of carbon nanotubes under compression. Compos. Struct. 100, 323–331 (2013)CrossRef Ansari, R., Shahabodini, A., Rouhi, H.: A thickness-independent nonlocal shell model for describing the stability behavior of carbon nanotubes under compression. Compos. Struct. 100, 323–331 (2013)CrossRef
38.
Zurück zum Zitat Ansari, R., Shahabodini, A., Rouhi, H.: A nonlocal plate model incorporating interatomic potentials for vibrations of graphene with arbitrary edge conditions. Curr. Appl. Phys. 15, 1062–1069 (2015)CrossRef Ansari, R., Shahabodini, A., Rouhi, H.: A nonlocal plate model incorporating interatomic potentials for vibrations of graphene with arbitrary edge conditions. Curr. Appl. Phys. 15, 1062–1069 (2015)CrossRef
39.
Zurück zum Zitat Wang, X., Guo, X.: Quasi-continuum model for the finite deformation of single layer graphene sheets based on the temperature-related higher order Cauchy–Born rule. J. Comput. Theor. Nanosci. 10, 154–164 (2013)CrossRef Wang, X., Guo, X.: Quasi-continuum model for the finite deformation of single layer graphene sheets based on the temperature-related higher order Cauchy–Born rule. J. Comput. Theor. Nanosci. 10, 154–164 (2013)CrossRef
40.
Zurück zum Zitat Singh, S., Patel, B.P.: Nonlinear elastic properties of graphene sheet under finite deformation. Compos. Struct. 119, 412–421 (2015)CrossRef Singh, S., Patel, B.P.: Nonlinear elastic properties of graphene sheet under finite deformation. Compos. Struct. 119, 412–421 (2015)CrossRef
41.
Zurück zum Zitat Singh, S., Patel, B.P.: Nonlinear dynamic response of single layer graphene sheets using multiscale modelling. Eur. J. Mech. A/Solids 59, 165–177 (2016)MathSciNetMATHCrossRef Singh, S., Patel, B.P.: Nonlinear dynamic response of single layer graphene sheets using multiscale modelling. Eur. J. Mech. A/Solids 59, 165–177 (2016)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Singh, S., Patel, B.P.: A computationally efficient multiscale finite element formulation for dynamic and postbuckling analyses of carbon nanotubes. Comput. Struct. 195, 126–144 (2018)CrossRef Singh, S., Patel, B.P.: A computationally efficient multiscale finite element formulation for dynamic and postbuckling analyses of carbon nanotubes. Comput. Struct. 195, 126–144 (2018)CrossRef
43.
Zurück zum Zitat Shahabodini, A., Ansari, R., Darvizeh, M.: Multiscale evaluation of the nonlinear elastic properties of carbon nanotubes under finite deformation. J. Ultrafine Grained Nanostruct. Mater. 50, 60–80 (2017) Shahabodini, A., Ansari, R., Darvizeh, M.: Multiscale evaluation of the nonlinear elastic properties of carbon nanotubes under finite deformation. J. Ultrafine Grained Nanostruct. Mater. 50, 60–80 (2017)
44.
Zurück zum Zitat Shahabodini, A., Ansari, R., Darvizeh, M.: Multiscale modeling of embedded graphene sheets based on the higher-order Cauchy–Born rule: nonlinear static analysis. Compos. Struct. 165, 25–43 (2017) CrossRef Shahabodini, A., Ansari, R., Darvizeh, M.: Multiscale modeling of embedded graphene sheets based on the higher-order Cauchy–Born rule: nonlinear static analysis. Compos. Struct. 165, 25–43 (2017) CrossRef
45.
Zurück zum Zitat Shahabodini, A., Ansari, R., Darvizeh, M.: Atomistic-continuum modeling of vibrational behavior of carbon nanotubes using the variational differential quadrature method. Compos. Struct. 185, 728–747 (2018)CrossRef Shahabodini, A., Ansari, R., Darvizeh, M.: Atomistic-continuum modeling of vibrational behavior of carbon nanotubes using the variational differential quadrature method. Compos. Struct. 185, 728–747 (2018)CrossRef
46.
Zurück zum Zitat Khoei, A.R., Jahanshahi, M., Toloui, G.: Validity of Cauchy–Born hypothesis in multi-scale modeling of plastic deformations. Int. J. Solids Struct. 115–116, 224–247 (2017)CrossRef Khoei, A.R., Jahanshahi, M., Toloui, G.: Validity of Cauchy–Born hypothesis in multi-scale modeling of plastic deformations. Int. J. Solids Struct. 115–116, 224–247 (2017)CrossRef
47.
Zurück zum Zitat Faghih Shojaei, M., Ansari, R.: Variational differential quadrature: a technique to simplify numerical analysis of structures. Appl. Math. Model. 49, 705–738 (2017)MathSciNetCrossRef Faghih Shojaei, M., Ansari, R.: Variational differential quadrature: a technique to simplify numerical analysis of structures. Appl. Math. Model. 49, 705–738 (2017)MathSciNetCrossRef
48.
Zurück zum Zitat Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988)CrossRef Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988)CrossRef
49.
Zurück zum Zitat Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990)CrossRef Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990)CrossRef
50.
Zurück zum Zitat Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, London (2000)MATHCrossRef Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, London (2000)MATHCrossRef
51.
Zurück zum Zitat Faghih Shojaei, M., Ansari, R., Mohammadi, V., Rouhi, H.: Nonlinear forced vibration analysis of postbuckled beams. Arch. Appl. Mech. 84, 421–440 (2014)MATHCrossRef Faghih Shojaei, M., Ansari, R., Mohammadi, V., Rouhi, H.: Nonlinear forced vibration analysis of postbuckled beams. Arch. Appl. Mech. 84, 421–440 (2014)MATHCrossRef
52.
Zurück zum Zitat Gholami, R., Ansari, R.: A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates. Nonlinear Dyn. 84, 2403–2422 (2016)MathSciNetCrossRef Gholami, R., Ansari, R.: A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates. Nonlinear Dyn. 84, 2403–2422 (2016)MathSciNetCrossRef
53.
Zurück zum Zitat Keller, H.B.: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, (Proceedings Advanced Seminars, University Wisconsin, Madison, WI, 1976), pp. 359–384. Academic Press, New York (1977) Keller, H.B.: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, (Proceedings Advanced Seminars, University Wisconsin, Madison, WI, 1976), pp. 359–384. Academic Press, New York (1977)
Metadaten
Titel
Nonlinear vibration analysis of graphene sheets resting on Winkler–Pasternak elastic foundation using an atomistic-continuum multiscale model
verfasst von
Y. Gholami
A. Shahabodini
R. Ansari
H. Rouhi
Publikationsdatum
10.08.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 12/2019
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02490-z

Weitere Artikel der Ausgabe 12/2019

Acta Mechanica 12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.