Skip to main content
Erschienen in: Acta Mechanica 3/2023

05.12.2022 | Original Paper

Nonlinear vibrations of doubly curved composite sandwich shells with FDM additively manufactured flexible honeycomb core

Erschienen in: Acta Mechanica | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Geometrically nonlinear forced vibrations of doubly curved sandwich shell with honeycomb core, which is manufactured by fused deposition modeling (FDM), are analyzed numerically. The higher-order shear deformation theory is used to describe the structure-deflected mode. The dynamic behavior of every layer of the structure is described by five variables (three displacements projections and two rotations of the normal to the middle surface). The system of the nonlinear ordinary differential equations is obtained to describe the sandwich shell forced nonlinear vibrations. The assumed-mode method is used to derive this system. The numerical approach, which is a combination of the continuation technique and the shooting method, is applied to analyze the nonlinear periodic vibrations and their bifurcations. The properties of the nonlinear periodic vibrations and their bifurcations are analyzed numerically in the principal and the sub-harmonic resonances.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Xu, M., Liu, D., Wang, P., Zhang, Z., Jia, H., Lei, H., Fang, D.: In-plane compression behavior of hybrid honeycomb metastructures: theoretical and experimental studies. Aerosp. Sci. Technol. 106, 106081 (2020) Xu, M., Liu, D., Wang, P., Zhang, Z., Jia, H., Lei, H., Fang, D.: In-plane compression behavior of hybrid honeycomb metastructures: theoretical and experimental studies. Aerosp. Sci. Technol. 106, 106081 (2020)
2.
Zurück zum Zitat Chen, Y., Li, T., Jia, Z., Scarpa, F., Yao, C., Wang, L.: 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Mater. Des. 137, 226–234 (2018) Chen, Y., Li, T., Jia, Z., Scarpa, F., Yao, C., Wang, L.: 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Mater. Des. 137, 226–234 (2018)
3.
Zurück zum Zitat Parsons, E.M.: Lightweight cellular metal composites with zero and tunable thermal expansion enabled by ultrasonic additive manufacturing: modeling, manufacturing, and testing. Compos. Struct. 223, 110656 (2019) Parsons, E.M.: Lightweight cellular metal composites with zero and tunable thermal expansion enabled by ultrasonic additive manufacturing: modeling, manufacturing, and testing. Compos. Struct. 223, 110656 (2019)
4.
Zurück zum Zitat Avramov, K., Uspensky, B.: Nonlinear supersonic flutter of sandwich truncated conical shell with flexible honeycomb core manufactured by fused deposition modeling. Int. J. Nonlinear Mech. 143, 104039 (2022) Avramov, K., Uspensky, B.: Nonlinear supersonic flutter of sandwich truncated conical shell with flexible honeycomb core manufactured by fused deposition modeling. Int. J. Nonlinear Mech. 143, 104039 (2022)
6.
Zurück zum Zitat Uspensky, B., Derevianko, I., Avramov, K., Polishchuk, O., Salenko, A.: Experimental and numerical study on fatigue of sandwich plates with honeycomb core manufactured by fused deposition modeling. Appl. Compos. Mater. 29, 2033–2061 (2022) Uspensky, B., Derevianko, I., Avramov, K., Polishchuk, O., Salenko, A.: Experimental and numerical study on fatigue of sandwich plates with honeycomb core manufactured by fused deposition modeling. Appl. Compos. Mater. 29, 2033–2061 (2022)
9.
Zurück zum Zitat Byberg, K.I., Gebisa, A.W., Lemu, H.: Mechanical properties of ULTEM 9085 material processed by fused deposition modeling. Polym. Test. 72, 335–347 (2018) Byberg, K.I., Gebisa, A.W., Lemu, H.: Mechanical properties of ULTEM 9085 material processed by fused deposition modeling. Polym. Test. 72, 335–347 (2018)
10.
Zurück zum Zitat Wilkins, D.J., Bert, C.W., Egle, D.M.: Free vibrations of orthotropic sandwich conical shells with various boundary conditions. J. Sound Vib. 130, 211–228 (1970)MATH Wilkins, D.J., Bert, C.W., Egle, D.M.: Free vibrations of orthotropic sandwich conical shells with various boundary conditions. J. Sound Vib. 130, 211–228 (1970)MATH
11.
Zurück zum Zitat Khatua, T.P., Cheung, Y.K.: Bending and vibration of multilayer sandwich beams and plates. Int. J. Numer. Meth. Eng. 6, 11–24 (1973)MATH Khatua, T.P., Cheung, Y.K.: Bending and vibration of multilayer sandwich beams and plates. Int. J. Numer. Meth. Eng. 6, 11–24 (1973)MATH
12.
Zurück zum Zitat Kanematsu, H.H., Hirano, Y.: Bending and vibration of CFRP – faced rectangular sandwich plates. Compos. Struct. 10, 145–163 (1988) Kanematsu, H.H., Hirano, Y.: Bending and vibration of CFRP – faced rectangular sandwich plates. Compos. Struct. 10, 145–163 (1988)
13.
Zurück zum Zitat Lee, L.J., Fan, Y.J.: Bending and vibration analysis of composite sandwich plates. Compos. Struct. 60, 103–112 (1996)MATH Lee, L.J., Fan, Y.J.: Bending and vibration analysis of composite sandwich plates. Compos. Struct. 60, 103–112 (1996)MATH
14.
Zurück zum Zitat Frostig, Y., Baruch, M., Vilnay, O., Sheinman, I.: High-order theory for sandwich beam with transversely flexible core. ASCE J. Eng. Mech. 118, 1026–1043 (2000) Frostig, Y., Baruch, M., Vilnay, O., Sheinman, I.: High-order theory for sandwich beam with transversely flexible core. ASCE J. Eng. Mech. 118, 1026–1043 (2000)
15.
Zurück zum Zitat Frostig, Y., Thomsen, O.T.: High-order free vibration of sandwich panels with a flexible core. Int. J. Solid Struct. 41, 1697–1724 (2004)MATH Frostig, Y., Thomsen, O.T.: High-order free vibration of sandwich panels with a flexible core. Int. J. Solid Struct. 41, 1697–1724 (2004)MATH
16.
Zurück zum Zitat Frostig, Y., Thomsen, O.T.: On the free vibration of sandwich panels with a transversely flexible and temperature-dependent core material – part I: mathematical formulation. Compos. Sci. Technol. 69, 856–862 (2009) Frostig, Y., Thomsen, O.T.: On the free vibration of sandwich panels with a transversely flexible and temperature-dependent core material – part I: mathematical formulation. Compos. Sci. Technol. 69, 856–862 (2009)
17.
Zurück zum Zitat Malekzadeh, K., Khalili, M.R., Mittal, R.K.: Local and global damped vibrations of plates with a viscoelastic soft flexible core: an improved high-order approach. J. Sandw. Struct. Mater. 7, 431–456 (2005) Malekzadeh, K., Khalili, M.R., Mittal, R.K.: Local and global damped vibrations of plates with a viscoelastic soft flexible core: an improved high-order approach. J. Sandw. Struct. Mater. 7, 431–456 (2005)
18.
Zurück zum Zitat Hohe, J., Librescu, L., Oh, S.Y.: Dynamic buckling of flat and curved sandwich panels with transversely compressible core. Compos. Struct. 74, 10–24 (2006) Hohe, J., Librescu, L., Oh, S.Y.: Dynamic buckling of flat and curved sandwich panels with transversely compressible core. Compos. Struct. 74, 10–24 (2006)
19.
Zurück zum Zitat Yongqiang, L., Zhiqiang, J.: Free flexural vibration analysis of symmetric rectangular honeycomb panels with SCSC edge supports. Compos. Struct. 83, 154–158 (2008) Yongqiang, L., Zhiqiang, J.: Free flexural vibration analysis of symmetric rectangular honeycomb panels with SCSC edge supports. Compos. Struct. 83, 154–158 (2008)
20.
Zurück zum Zitat Yongqiang, L., Dawei, Z.: Free flexural vibration analysis of symmetric rectangular honeycomb panels using the improved Reddy’s third-order plate theory. Compos. Struct. 88, 33–39 (2009) Yongqiang, L., Dawei, Z.: Free flexural vibration analysis of symmetric rectangular honeycomb panels using the improved Reddy’s third-order plate theory. Compos. Struct. 88, 33–39 (2009)
21.
Zurück zum Zitat Qing-Tian, D., Zhi-Chun, Y.: Wave propagation in sandwich panel with auxetic core. J. Solid Mech. 2, 393–402 (2010) Qing-Tian, D., Zhi-Chun, Y.: Wave propagation in sandwich panel with auxetic core. J. Solid Mech. 2, 393–402 (2010)
22.
Zurück zum Zitat Malekzadeh, K., Sayyidmousavi, A.: Free vibration analysis of sandwich plates with a uniformly distributed attached mass, flexible core, and different boundary conditions. J. Sandw. Struct. Mater. 12, 709–732 (2010) Malekzadeh, K., Sayyidmousavi, A.: Free vibration analysis of sandwich plates with a uniformly distributed attached mass, flexible core, and different boundary conditions. J. Sandw. Struct. Mater. 12, 709–732 (2010)
23.
Zurück zum Zitat Ramian, A., Jafari-Talookolaei, R.A., Valvo, P.S., Abedi, M.: Free vibration analysis of sandwich plates with compressible core in contact with fluid. Thin-Walled Struct. 157, 107088 (2020) Ramian, A., Jafari-Talookolaei, R.A., Valvo, P.S., Abedi, M.: Free vibration analysis of sandwich plates with compressible core in contact with fluid. Thin-Walled Struct. 157, 107088 (2020)
24.
Zurück zum Zitat Li, Y., Yao, W., Wang, T.: Free flexural vibration of thin-walled honeycomb sandwich cylindrical shells. Thin-Walled Struct. 157, 107032 (2020) Li, Y., Yao, W., Wang, T.: Free flexural vibration of thin-walled honeycomb sandwich cylindrical shells. Thin-Walled Struct. 157, 107032 (2020)
25.
Zurück zum Zitat Karimiasla, M., Ebrahimia, F., Maheshb, V.: Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell. Thin-Walled Struct. 143, 106152 (2019) Karimiasla, M., Ebrahimia, F., Maheshb, V.: Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell. Thin-Walled Struct. 143, 106152 (2019)
26.
Zurück zum Zitat Karimiasl, M., Ebrahimi, F.: Large amplitude vibration of viscoelastically damped multiscale composite doubly curved sandwich shell with flexible core and MR layers. Thin-Walled Struct. 144, 106128 (2019) Karimiasl, M., Ebrahimi, F.: Large amplitude vibration of viscoelastically damped multiscale composite doubly curved sandwich shell with flexible core and MR layers. Thin-Walled Struct. 144, 106128 (2019)
27.
Zurück zum Zitat Yadav, A., Amabili, M., Panda, S.K., Dey, T., Kumar, R.: Forced nonlinear vibrations of circular cylindrical sandwich shells with cellular core using higher-order shear and thickness deformation theory. J. Sound Vib. 510, 116283 (2021) Yadav, A., Amabili, M., Panda, S.K., Dey, T., Kumar, R.: Forced nonlinear vibrations of circular cylindrical sandwich shells with cellular core using higher-order shear and thickness deformation theory. J. Sound Vib. 510, 116283 (2021)
28.
Zurück zum Zitat Quyen, N.V., Thanh, N.V., Quan, T.Q., Duc, N.D.: Nonlinear forced vibration of sandwich cylindrical panel with negative Poisson’s ratio auxetic honeycombs core and CNTRC face sheets. Thin-Walled Struct. 162, 107571 (2021) Quyen, N.V., Thanh, N.V., Quan, T.Q., Duc, N.D.: Nonlinear forced vibration of sandwich cylindrical panel with negative Poisson’s ratio auxetic honeycombs core and CNTRC face sheets. Thin-Walled Struct. 162, 107571 (2021)
29.
Zurück zum Zitat Cong, P.H., Khanh, N.D., Khoa, N.D., Duc, N.D.: New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT. Compos. Struct. 185, 455–465 (2018) Cong, P.H., Khanh, N.D., Khoa, N.D., Duc, N.D.: New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT. Compos. Struct. 185, 455–465 (2018)
30.
Zurück zum Zitat Naidu, N.V., Sinha, P.K.: Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments. Compos. Struct. 77, 475–483 (2007) Naidu, N.V., Sinha, P.K.: Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments. Compos. Struct. 77, 475–483 (2007)
31.
Zurück zum Zitat Zhang, Y., Li, Y.: Nonlinear dynamic analysis of a double curvature honeycomb sandwich shell with simply supported boundaries by the homotopy analysis method. Compos. Struct. 221, 110884 (2019) Zhang, Y., Li, Y.: Nonlinear dynamic analysis of a double curvature honeycomb sandwich shell with simply supported boundaries by the homotopy analysis method. Compos. Struct. 221, 110884 (2019)
32.
Zurück zum Zitat Yongqiang, L., Feng, L., Yongliang, H.: Geometrically nonlinear forced vibrations of the symmetric rectangular honeycomb sandwich panels with completed clamped supported boundaries. Compos. Struct. 93, 360–368 (2011) Yongqiang, L., Feng, L., Yongliang, H.: Geometrically nonlinear forced vibrations of the symmetric rectangular honeycomb sandwich panels with completed clamped supported boundaries. Compos. Struct. 93, 360–368 (2011)
33.
Zurück zum Zitat Li, C., Shen, H.S., Wang, H., Yu, Z.: Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core. Int. J. Mech. Sci. 174, 105472 (2020) Li, C., Shen, H.S., Wang, H., Yu, Z.: Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core. Int. J. Mech. Sci. 174, 105472 (2020)
34.
Zurück zum Zitat Malekzadeh, P.: A differential quadrature nonlinear free vibration analysis of laminated composite skew thin plates. Thin-Walled Struct. 45, 237–250 (2007) Malekzadeh, P.: A differential quadrature nonlinear free vibration analysis of laminated composite skew thin plates. Thin-Walled Struct. 45, 237–250 (2007)
35.
Zurück zum Zitat Li, Y., Zhou, M., Wang, T., Zhang, Y.: Nonlinear primary resonance with internal resonances of the symmetric rectangular honeycomb sandwich panels with simply supported along all four edges. Thin-Walled Struct. 147, 106480 (2020) Li, Y., Zhou, M., Wang, T., Zhang, Y.: Nonlinear primary resonance with internal resonances of the symmetric rectangular honeycomb sandwich panels with simply supported along all four edges. Thin-Walled Struct. 147, 106480 (2020)
36.
Zurück zum Zitat Goncalves, B.R., Jelovica, J., Romanoff, J.: A homogenization method for geometric nonlinear analysis of sandwich structures with initial imperfections. Int. J. Solid Struct. 87, 194–205 (2016) Goncalves, B.R., Jelovica, J., Romanoff, J.: A homogenization method for geometric nonlinear analysis of sandwich structures with initial imperfections. Int. J. Solid Struct. 87, 194–205 (2016)
37.
Zurück zum Zitat Duc, N.D., Seung-Eock, K., Tuan, N.D., Tran, P., Khoa, N.D.: New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer. Aerosp. Sci. Technol. 70, 396–404 (2017) Duc, N.D., Seung-Eock, K., Tuan, N.D., Tran, P., Khoa, N.D.: New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer. Aerosp. Sci. Technol. 70, 396–404 (2017)
38.
Zurück zum Zitat Chen, X., Feng, Z.: Dynamic behaviour of a thin laminated plate embedded with auxetic layers subject to in-plane excitation. Mech. Res. Commun. 85, 45–52 (2017) Chen, X., Feng, Z.: Dynamic behaviour of a thin laminated plate embedded with auxetic layers subject to in-plane excitation. Mech. Res. Commun. 85, 45–52 (2017)
39.
Zurück zum Zitat Cong, P.H., Long, P.T., Nhat, N.V., Duc, N.D.: Geometrically nonlinear dynamic response of eccentrically stiffened circular cylindrical shells with negative poisson’s ratio in auxetic honeycombs core layer. Int. J. Mech. Sci. 152, 443–445 (2019) Cong, P.H., Long, P.T., Nhat, N.V., Duc, N.D.: Geometrically nonlinear dynamic response of eccentrically stiffened circular cylindrical shells with negative poisson’s ratio in auxetic honeycombs core layer. Int. J. Mech. Sci. 152, 443–445 (2019)
40.
Zurück zum Zitat Avramov, K., Chernobryvko, M., Uspensky, B., Seitkazenova, K.K., Myrzaliyev, D.: Self-sustained vibrations of functionally graded carbon nanotubes reinforced composite cylindrical shell in supersonic flow. Nonlinear Dyn. 98, 1853–1876 (2019) Avramov, K., Chernobryvko, M., Uspensky, B., Seitkazenova, K.K., Myrzaliyev, D.: Self-sustained vibrations of functionally graded carbon nanotubes reinforced composite cylindrical shell in supersonic flow. Nonlinear Dyn. 98, 1853–1876 (2019)
41.
Zurück zum Zitat Kucewicz, M., Baranowski, P., Stankiewicza, M., Konarzewskia, M., Płatekb, P., Małachowskia, J.: Modelling and testing of 3D printed cellular structures under quasi-static and dynamic conditions. Thin-Walled Struct. 145, 106385 (2019) Kucewicz, M., Baranowski, P., Stankiewicza, M., Konarzewskia, M., Płatekb, P., Małachowskia, J.: Modelling and testing of 3D printed cellular structures under quasi-static and dynamic conditions. Thin-Walled Struct. 145, 106385 (2019)
42.
Zurück zum Zitat Dizon, J.R.C., Espera, A.H., Chen, Q., Advincula, R.C.: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44–67 (2018) Dizon, J.R.C., Espera, A.H., Chen, Q., Advincula, R.C.: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44–67 (2018)
43.
Zurück zum Zitat Li, S., Liu, Z., Shim, V.P.W., Guo, Y., Sun, Z., Li, X., Wang, Z.: In-plane compression of 3D-printed self-similar hierarchical honeycombs–static and dynamic analysis. Thin-Walled Struct. 157, 106990 (2020) Li, S., Liu, Z., Shim, V.P.W., Guo, Y., Sun, Z., Li, X., Wang, Z.: In-plane compression of 3D-printed self-similar hierarchical honeycombs–static and dynamic analysis. Thin-Walled Struct. 157, 106990 (2020)
44.
Zurück zum Zitat Kulkarni, P., Dutta, D.: Deposition strategies and resulting part stiffnesses in fused deposition modeling. J. Manuf. Sci. Eng. 121, 93–103 (1999) Kulkarni, P., Dutta, D.: Deposition strategies and resulting part stiffnesses in fused deposition modeling. J. Manuf. Sci. Eng. 121, 93–103 (1999)
45.
Zurück zum Zitat Catapano, A., Montemurro, M.: A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I: homogenisation of core properties. Compos. Struct. 118, 664–676 (2014) Catapano, A., Montemurro, M.: A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I: homogenisation of core properties. Compos. Struct. 118, 664–676 (2014)
46.
Zurück zum Zitat Grediac, M.: A finite element study of the transverse shear in honeycomb cores. Int. J. Solid Struct. 30, 1777–1788 (1993)MATH Grediac, M.: A finite element study of the transverse shear in honeycomb cores. Int. J. Solid Struct. 30, 1777–1788 (1993)MATH
47.
Zurück zum Zitat Reddy, J.N.: A simple higher-order theory for laminated composite plates. ASME J. Appl. Mech. 51, 745–752 (1984)MATH Reddy, J.N.: A simple higher-order theory for laminated composite plates. ASME J. Appl. Mech. 51, 745–752 (1984)MATH
48.
Zurück zum Zitat Reddy, J.N.: A refined nonlinear theory of plates with transverse shear deformation. Int. J. Solid Struct. 20, 881–896 (1984)MATH Reddy, J.N.: A refined nonlinear theory of plates with transverse shear deformation. Int. J. Solid Struct. 20, 881–896 (1984)MATH
49.
Zurück zum Zitat Amabili, M.: Nonlinear Mechanics of Shells and Plates in Composite Soft and Biological Materials. Cambridge University Press, Cambridge (2018)MATH Amabili, M.: Nonlinear Mechanics of Shells and Plates in Composite Soft and Biological Materials. Cambridge University Press, Cambridge (2018)MATH
50.
Zurück zum Zitat Meirovitch, L.: Fundamentals of Vibrations. Mc Graw Hill, New York (1970)MATH Meirovitch, L.: Fundamentals of Vibrations. Mc Graw Hill, New York (1970)MATH
52.
Zurück zum Zitat Seydel, R.: Nonlinear computation. Int. J. Bifurc. Chaos 7, 2105–2126 (1997)MATH Seydel, R.: Nonlinear computation. Int. J. Bifurc. Chaos 7, 2105–2126 (1997)MATH
53.
Zurück zum Zitat Doedel, E., Keller, H.B., Kernevez, J.P.: Numerical analysis and control of bifurcation problems (I) bifurcation in finite dimensions. Int. J. Bifurc. Chaos 1, 493–520 (1991)MathSciNetMATH Doedel, E., Keller, H.B., Kernevez, J.P.: Numerical analysis and control of bifurcation problems (I) bifurcation in finite dimensions. Int. J. Bifurc. Chaos 1, 493–520 (1991)MathSciNetMATH
54.
Zurück zum Zitat Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, Berlin (1989)MATH Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, Berlin (1989)MATH
55.
Zurück zum Zitat Avramov, K.V.: Nonlinear forced vibrations of a cylindrical shell with two internal resonances. Int. Appl. Mech. 42, 169–175 (2006) Avramov, K.V.: Nonlinear forced vibrations of a cylindrical shell with two internal resonances. Int. Appl. Mech. 42, 169–175 (2006)
56.
Zurück zum Zitat Avramov, K.V., Gendelman, O.V.: Interaction of elastic system with snap-through vibration absorber. Int. J. Nonlinear Mech. 44, 81–89 (2009)MATH Avramov, K.V., Gendelman, O.V.: Interaction of elastic system with snap-through vibration absorber. Int. J. Nonlinear Mech. 44, 81–89 (2009)MATH
57.
Zurück zum Zitat Rusanov, A., Martynenko, G., Avramov, K., Martynenko, V.: Detection of accident causes on turbine-generator sets by means of numerical simulations. In: 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems, Conference Proceedings, p. 51–55. IEEE, Kharkov, Ukraine (2018) Rusanov, A., Martynenko, G., Avramov, K., Martynenko, V.: Detection of accident causes on turbine-generator sets by means of numerical simulations. In: 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems, Conference Proceedings, p. 51–55. IEEE, Kharkov, Ukraine (2018)
Metadaten
Titel
Nonlinear vibrations of doubly curved composite sandwich shells with FDM additively manufactured flexible honeycomb core
Publikationsdatum
05.12.2022
Erschienen in
Acta Mechanica / Ausgabe 3/2023
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-022-03426-w

Weitere Artikel der Ausgabe 3/2023

Acta Mechanica 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.