Skip to main content

2014 | OriginalPaper | Buchkapitel

Nonlinear Viscoelasticity in Three Dimensional Filler Reinforced Rubber Composites and Nanocomposites

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter describes the influence of three-dimensional nanofillers used in elastomers on the nonlinear viscoelastic properties. In particular, this part focuses and investigates the most important three-dimensional nanoparticles, which are used to produce rubber nanocomposites. The rheological and the dynamic mechanical properties of elastomeric polymers, reinforced with spherical nanoparticles, like POSS, titanium dioxide and nanosilica, were described. These (3D) nanofillers in are used polymeric matrices, to create new, improved rubber nanocomposites, and these affect many of the system’s parameters (mechanical, chemical, physical) in comparison with conventional composites. The distribution of the nanosized fillers and interaction between nanofiller-nanofiller and nanofiller-matrix, in nanocomposite systems, is crucial for understanding their behavior under dynamic-mechanical conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part II: An overview on thermal decomposition of polycondensation polymers. Thermochim Acta 523(1–2):25–45CrossRef Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part II: An overview on thermal decomposition of polycondensation polymers. Thermochim Acta 523(1–2):25–45CrossRef
2.
Zurück zum Zitat Sarvestani AS (2010) Nonlinear rheology of unentangled polymer melts reinforced with high concentration of rigid nanoparticles. Nanoscale Res Lett 5(4):791–794CrossRef Sarvestani AS (2010) Nonlinear rheology of unentangled polymer melts reinforced with high concentration of rigid nanoparticles. Nanoscale Res Lett 5(4):791–794CrossRef
3.
Zurück zum Zitat Payne AR (1962) The dymanic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6:57CrossRef Payne AR (1962) The dymanic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6:57CrossRef
4.
Zurück zum Zitat Payne AR (1965) Reinforcement of elastomers, Chap. 3. Interscience, New York, pp 69–123 Payne AR (1965) Reinforcement of elastomers, Chap. 3. Interscience, New York, pp 69–123
5.
Zurück zum Zitat Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley, WeinheimCrossRef Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley, WeinheimCrossRef
6.
Zurück zum Zitat Mukhopadhyay AM (2012) Nanoscale multifunctional materials, science and applications. Wiley, Mississauga, ON Mukhopadhyay AM (2012) Nanoscale multifunctional materials, science and applications. Wiley, Mississauga, ON
7.
Zurück zum Zitat Li G, Wang L, Ni H Jr, CUP (2002) Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Org Polym 11(3):123–154CrossRef Li G, Wang L, Ni H Jr, CUP (2002) Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Org Polym 11(3):123–154CrossRef
8.
Zurück zum Zitat Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110(4):2081–2173CrossRef Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110(4):2081–2173CrossRef
9.
Zurück zum Zitat Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2(4):445–475CrossRef Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2(4):445–475CrossRef
10.
Zurück zum Zitat Markovic E, ConstantopolousK, Matisons JG (2011) In: Hartmann-Thompson C (ed) Applications of polyhedral oligomeric silsesquioxanes, vol 3. Springer, Dordrecht, pp 1–46 Markovic E, ConstantopolousK, Matisons JG (2011) In: Hartmann-Thompson C (ed) Applications of polyhedral oligomeric silsesquioxanes, vol 3. Springer, Dordrecht, pp 1–46
11.
Zurück zum Zitat Gnanasekaran D, Madhavan K, Reddy BSR (2009) Developments of polyhedral oligomeric silsesquioxanes (POSS), POSS nanocomposites and their applications: a review. J Sci Ind Res 68:437–464 Gnanasekaran D, Madhavan K, Reddy BSR (2009) Developments of polyhedral oligomeric silsesquioxanes (POSS), POSS nanocomposites and their applications: a review. J Sci Ind Res 68:437–464
12.
Zurück zum Zitat Pielichowski K, Janowski JNB (2006) Polyhedral oligomeric silsesquioxanes (POSS) - containing nanohybrid polymers. Adv Polym Sci 201:225–296CrossRef Pielichowski K, Janowski JNB (2006) Polyhedral oligomeric silsesquioxanes (POSS) - containing nanohybrid polymers. Adv Polym Sci 201:225–296CrossRef
13.
Zurück zum Zitat Koo JH (2009) Polymer nanocomposites, processing, characterization and applications, Chap. 2. An overview of nanoparticles. McGraw-Hill, New York Koo JH (2009) Polymer nanocomposites, processing, characterization and applications, Chap. 2. An overview of nanoparticles. McGraw-Hill, New York
14.
Zurück zum Zitat Phillips SH, Haddad TS, Tomczak SJ (2004) Developments in nanoscience. Polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Sold State Mater Sci 8:21–29CrossRef Phillips SH, Haddad TS, Tomczak SJ (2004) Developments in nanoscience. Polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Sold State Mater Sci 8:21–29CrossRef
16.
Zurück zum Zitat Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 1–15 Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 1–15
17.
Zurück zum Zitat Sabu T, Ranimol S (2010) Rubber nanocomposites, preparation, properties and application. Wiley, Singapore Sabu T, Ranimol S (2010) Rubber nanocomposites, preparation, properties and application. Wiley, Singapore
18.
Zurück zum Zitat Bandyopadhyay A, de Sarkar M, Bhowmick AK (2005) Polymer-filler interactions in sol–gel derived polymer/silica hybrid nanocomposites. J Polym Sci B Polym Phys 43(17):2399–2412CrossRef Bandyopadhyay A, de Sarkar M, Bhowmick AK (2005) Polymer-filler interactions in sol–gel derived polymer/silica hybrid nanocomposites. J Polym Sci B Polym Phys 43(17):2399–2412CrossRef
19.
Zurück zum Zitat Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28(1):83–114CrossRef Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28(1):83–114CrossRef
20.
Zurück zum Zitat Shu H, Li X, Zhang Z (2008) Surface modified nano-silica and its action on polymer. Prog Chem 20(10):1509–1514 Shu H, Li X, Zhang Z (2008) Surface modified nano-silica and its action on polymer. Prog Chem 20(10):1509–1514
21.
Zurück zum Zitat Kang S, Hong SI, Choe CR, Park M, Rim S, Kim J (2001) Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer 42(3):879–887CrossRef Kang S, Hong SI, Choe CR, Park M, Rim S, Kim J (2001) Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer 42(3):879–887CrossRef
22.
Zurück zum Zitat Yu YY, Chen CY, Chen WC (2002) Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica. Polymer 44(3):593–601CrossRef Yu YY, Chen CY, Chen WC (2002) Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica. Polymer 44(3):593–601CrossRef
23.
Zurück zum Zitat Yu YY, Chen WC (2003) Transparent organic–inorganic hybrid thin films prepared from acrylic polymer and aqueous monodispersed colloidal silica. Mater Chem Phys 82(2):388–395CrossRef Yu YY, Chen WC (2003) Transparent organic–inorganic hybrid thin films prepared from acrylic polymer and aqueous monodispersed colloidal silica. Mater Chem Phys 82(2):388–395CrossRef
24.
Zurück zum Zitat Vega-Baudrit J, Navarro-Banon V, Vazquez P, Martin-Martinez JM (2006) Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives. Int J Adhes Adhes 26(5):378–387CrossRef Vega-Baudrit J, Navarro-Banon V, Vazquez P, Martin-Martinez JM (2006) Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives. Int J Adhes Adhes 26(5):378–387CrossRef
25.
Zurück zum Zitat Rodriguez JGI, Carreira P, Diez A, Hui G, Artiaga DR, Marzan LML (2007) Nanofiller effect on the glass transition of a polyurethane. J Therm Anal Calorim 87(1):45–47CrossRef Rodriguez JGI, Carreira P, Diez A, Hui G, Artiaga DR, Marzan LML (2007) Nanofiller effect on the glass transition of a polyurethane. J Therm Anal Calorim 87(1):45–47CrossRef
26.
Zurück zum Zitat Chen Y, Zhou S, Yang H, Gu G, Wu L (2004) Preparation and characterization of nanocomposite polyurethane. J Colloid Interface Sci 279(2):370–378CrossRef Chen Y, Zhou S, Yang H, Gu G, Wu L (2004) Preparation and characterization of nanocomposite polyurethane. J Colloid Interface Sci 279(2):370–378CrossRef
28.
Zurück zum Zitat Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957CrossRef Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957CrossRef
29.
Zurück zum Zitat Pal M, Garcı J (2007) Size-controlled synthesis of spherical TiO2 nanoparticles: morphology, crystallization, and phase transition. J Phys Chem C 111:96–102CrossRef Pal M, Garcı J (2007) Size-controlled synthesis of spherical TiO2 nanoparticles: morphology, crystallization, and phase transition. J Phys Chem C 111:96–102CrossRef
30.
Zurück zum Zitat Campet G, Han SD, Duguet E, Portier J (1994) TiO2-polymer nano-composites by sol–gel. J Sol-gel Sci Technol 2:121–125CrossRef Campet G, Han SD, Duguet E, Portier J (1994) TiO2-polymer nano-composites by sol–gel. J Sol-gel Sci Technol 2:121–125CrossRef
31.
Zurück zum Zitat Mahshid S, Ghamsari MS, Askari M, Afshar N, Lahuti S (2006) Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Technol 9:65–68 Mahshid S, Ghamsari MS, Askari M, Afshar N, Lahuti S (2006) Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Technol 9:65–68
32.
Zurück zum Zitat Funda S, Meltem A, Şadiye Ş, Sema E, Murat E, Hikmet S (2007) Hydrothermal synthesis, characterization and photocatalytic activity of nanosized TiO2, based catalysts for rhodamine B degradation. Turk J Chem 31:211–221 Funda S, Meltem A, Şadiye Ş, Sema E, Murat E, Hikmet S (2007) Hydrothermal synthesis, characterization and photocatalytic activity of nanosized TiO2, based catalysts for rhodamine B degradation. Turk J Chem 31:211–221
33.
Zurück zum Zitat Kim TK, Lee MN, Lee SH, Park YC, Jung CK, Boo JH (2005) Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films 475:71–177 Kim TK, Lee MN, Lee SH, Park YC, Jung CK, Boo JH (2005) Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films 475:71–177
34.
Zurück zum Zitat Ahmad A, Awan GH, Aziz S (2007) Synthesis and application of TiO2 nanoparticles. In: Pakistan engineering congress, 70th annual session proceedings, vol 676, pp 404–412 Ahmad A, Awan GH, Aziz S (2007) Synthesis and application of TiO2 nanoparticles. In: Pakistan engineering congress, 70th annual session proceedings, vol 676, pp 404–412
35.
Zurück zum Zitat Nussbaumer J, Caseri WR, Smith P, Tervoort T (2003) Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol Mater Eng 288(1):44–49CrossRef Nussbaumer J, Caseri WR, Smith P, Tervoort T (2003) Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol Mater Eng 288(1):44–49CrossRef
36.
Zurück zum Zitat Pandey JK, Reddy KR, Kumar AP, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 898:234–250CrossRef Pandey JK, Reddy KR, Kumar AP, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 898:234–250CrossRef
37.
Zurück zum Zitat Chaudhari S, Shaikh T, Pandey P (2013) A review on polymer TiO2 nanocomposites. Int J Eng Res Appl 3(5):1386–1391 Chaudhari S, Shaikh T, Pandey P (2013) A review on polymer TiO2 nanocomposites. Int J Eng Res Appl 3(5):1386–1391
38.
Zurück zum Zitat Arantes TM, Leão KV, Tavares MIB, Ferreira AG, Longo E, Camargo ER (2009) NMR study of styrene-butadiene rubber (SBR) and TiO2 nanocomposites. Polym Test 28(5):490–494CrossRef Arantes TM, Leão KV, Tavares MIB, Ferreira AG, Longo E, Camargo ER (2009) NMR study of styrene-butadiene rubber (SBR) and TiO2 nanocomposites. Polym Test 28(5):490–494CrossRef
39.
Zurück zum Zitat Evonik Industries (2011) Inorganic materials for catalyst innovation. Industry Information 2242 Evonik Industries (2011) Inorganic materials for catalyst innovation. Industry Information 2242
40.
Zurück zum Zitat Cuppoletti J (2011) Nanocomposites and polymers with analytical methods. INTECH Open Access, RijekaCrossRef Cuppoletti J (2011) Nanocomposites and polymers with analytical methods. INTECH Open Access, RijekaCrossRef
41.
Zurück zum Zitat Varghese S, Karger-Kocsis J (2004) Melt-compounded natural rubber nanocomposites with pristine and organophilic layered silicates of natural and synthetic origin. J Appl Polym Sci 91:813CrossRef Varghese S, Karger-Kocsis J (2004) Melt-compounded natural rubber nanocomposites with pristine and organophilic layered silicates of natural and synthetic origin. J Appl Polym Sci 91:813CrossRef
42.
Zurück zum Zitat Zhang H, Wang Y, Wu Y (2005) Study on flammability of montmorillonite/styrene-butadiene rubber (SBR) nanocomposites. J Appl Polym Sci 97:844CrossRef Zhang H, Wang Y, Wu Y (2005) Study on flammability of montmorillonite/styrene-butadiene rubber (SBR) nanocomposites. J Appl Polym Sci 97:844CrossRef
43.
Zurück zum Zitat Kim JT, OhTS LDH (2003) Preparation and characteristics of nitrile rubber (NBR) nanocomposites based on organophilic layered clay. Polym Int 52:1058CrossRef Kim JT, OhTS LDH (2003) Preparation and characteristics of nitrile rubber (NBR) nanocomposites based on organophilic layered clay. Polym Int 52:1058CrossRef
44.
Zurück zum Zitat Gatos KG, Thomann R, Karger-kocsis J (2004) Characteristics of ethylene propylene diene monomer rubber/organoclay nanocomposites resulting from different processing conditions and formulations. Polym Int 53:1191CrossRef Gatos KG, Thomann R, Karger-kocsis J (2004) Characteristics of ethylene propylene diene monomer rubber/organoclay nanocomposites resulting from different processing conditions and formulations. Polym Int 53:1191CrossRef
45.
Zurück zum Zitat Tien Y, Wei K (2001) Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer 42(7):3213–3221CrossRef Tien Y, Wei K (2001) Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer 42(7):3213–3221CrossRef
46.
Zurück zum Zitat Strankowski M, Strankowska J, Gazda M, Piszczyk Ł, Nowaczyk G, Jurga S (2012) Thermoplastic polyurethane/(organically modified montmorillonite) nanocomposites produced by in situ polymerization. Exp Polym Lett 6(8):610–619CrossRef Strankowski M, Strankowska J, Gazda M, Piszczyk Ł, Nowaczyk G, Jurga S (2012) Thermoplastic polyurethane/(organically modified montmorillonite) nanocomposites produced by in situ polymerization. Exp Polym Lett 6(8):610–619CrossRef
47.
Zurück zum Zitat Pan G, Mark JE, Schaefer DW (2003) Synthesis and characterization of fillers of controlled structure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcing siloxane elastomers. J Polym Sci B Polym Phys 41(24):3314–3323CrossRef Pan G, Mark JE, Schaefer DW (2003) Synthesis and characterization of fillers of controlled structure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcing siloxane elastomers. J Polym Sci B Polym Phys 41(24):3314–3323CrossRef
48.
Zurück zum Zitat Kraus GJ (1984) Mechanical losses in carbon black filled rubbers. J Appl Polym Sci Appl Polym Symp 39:75–92 Kraus GJ (1984) Mechanical losses in carbon black filled rubbers. J Appl Polym Sci Appl Polym Symp 39:75–92
49.
Zurück zum Zitat Casalini R, Bogoslovov R, Qadri SB, Roland CM (2012) Nanofiller reinforcement of elastomeric polyurea. Polymer 53(6):1282–1287CrossRef Casalini R, Bogoslovov R, Qadri SB, Roland CM (2012) Nanofiller reinforcement of elastomeric polyurea. Polymer 53(6):1282–1287CrossRef
50.
Zurück zum Zitat Meera AP, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113(42):17997–18002CrossRef Meera AP, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113(42):17997–18002CrossRef
51.
Zurück zum Zitat Maier PG, Göritz D (1996) Molecular interpretation on the Payne effect. Kautsch Gummi Kunstst 49:18–22 Maier PG, Göritz D (1996) Molecular interpretation on the Payne effect. Kautsch Gummi Kunstst 49:18–22
52.
Zurück zum Zitat Peng CC, Göpfert A, Drechsler M, Abetz V (2005) “Smart” silica-rubber nanocomposites in virtue of hydrogen bonding interaction. Polym Adv Technol 16(11–12):770–782CrossRef Peng CC, Göpfert A, Drechsler M, Abetz V (2005) “Smart” silica-rubber nanocomposites in virtue of hydrogen bonding interaction. Polym Adv Technol 16(11–12):770–782CrossRef
53.
Zurück zum Zitat Ramier J, Gauthier C, Chazeau L, Stelandre L, Guy L (2007) Payne effect in silica-filled styrene – butadiene rubber: influence of surface treatment. J Polym Sci B Polym Phys 45(3):286–298CrossRef Ramier J, Gauthier C, Chazeau L, Stelandre L, Guy L (2007) Payne effect in silica-filled styrene – butadiene rubber: influence of surface treatment. J Polym Sci B Polym Phys 45(3):286–298CrossRef
54.
Zurück zum Zitat Stöckelhuber KW, Svistkov S, Pelevin G, Heinrich G (2011) Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 44(11):4366–4381CrossRef Stöckelhuber KW, Svistkov S, Pelevin G, Heinrich G (2011) Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 44(11):4366–4381CrossRef
55.
Zurück zum Zitat Li Q, Zhao S, Pan Y (2010) Structure, morphology and properties of HNBR filled with N550, SiO2, ZDMA, and two of three kinds of fillers. J Appl Polym Sci 117(1):421–427 Li Q, Zhao S, Pan Y (2010) Structure, morphology and properties of HNBR filled with N550, SiO2, ZDMA, and two of three kinds of fillers. J Appl Polym Sci 117(1):421–427
56.
Zurück zum Zitat Huang X, Fang X, Lu Z, Chen S (2009) Reinforcement of polysiloxane with superhydrophobic nanosilica. J Mater Sci 44(17):4522–4530CrossRef Huang X, Fang X, Lu Z, Chen S (2009) Reinforcement of polysiloxane with superhydrophobic nanosilica. J Mater Sci 44(17):4522–4530CrossRef
57.
Zurück zum Zitat Yang J, Han CR (2013) Dynamics of silica-nanoparticle-filled hybrid hydrogels: nonlinear viscoelastic behavior and chain entanglement network. J Phys Chem C 117(39):20236–20243CrossRef Yang J, Han CR (2013) Dynamics of silica-nanoparticle-filled hybrid hydrogels: nonlinear viscoelastic behavior and chain entanglement network. J Phys Chem C 117(39):20236–20243CrossRef
58.
Zurück zum Zitat Meera AP, Grohens Y, Luyt AS, Thomas S, Sud B, Maude R, Saint (2009) Tensile stress relaxation studies of TiO2 and nanosilica filled natural rubber composites. Ind Eng Chem Res 48(7):3410–3416CrossRef Meera AP, Grohens Y, Luyt AS, Thomas S, Sud B, Maude R, Saint (2009) Tensile stress relaxation studies of TiO2 and nanosilica filled natural rubber composites. Ind Eng Chem Res 48(7):3410–3416CrossRef
59.
Zurück zum Zitat Bahloul W, Lyon D, Umr C (2010) Morphology and viscoelasticity of PP/TiO2 nanocomposites prepared by in situ sol–gel method. J Polym Sci B Polym Phys 48:1213–1222CrossRef Bahloul W, Lyon D, Umr C (2010) Morphology and viscoelasticity of PP/TiO2 nanocomposites prepared by in situ sol–gel method. J Polym Sci B Polym Phys 48:1213–1222CrossRef
60.
Zurück zum Zitat Lu M, He B, Wang L, Ge W, Lu Q, Liu Y, Zhang L (2012) Preparation of polystyrene–polyisoprene core–shell nanoparticles for reinforcement of elastomers. Compos B Eng 43(1):50–56CrossRef Lu M, He B, Wang L, Ge W, Lu Q, Liu Y, Zhang L (2012) Preparation of polystyrene–polyisoprene core–shell nanoparticles for reinforcement of elastomers. Compos B Eng 43(1):50–56CrossRef
61.
Zurück zum Zitat Ding N, Hao F, Li L, Sun W, Liu L (2012) Study on physical and dynamic properties of BR based composites filled with different particle size magnesia. Appl Mech Mater 217–219:165–173CrossRef Ding N, Hao F, Li L, Sun W, Liu L (2012) Study on physical and dynamic properties of BR based composites filled with different particle size magnesia. Appl Mech Mater 217–219:165–173CrossRef
62.
Zurück zum Zitat Bindu P, Thomas S (2013) Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J Phys Chem B 117(41):12632–12648CrossRef Bindu P, Thomas S (2013) Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J Phys Chem B 117(41):12632–12648CrossRef
Metadaten
Titel
Nonlinear Viscoelasticity in Three Dimensional Filler Reinforced Rubber Composites and Nanocomposites
verfasst von
Michał Strankowski
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-08702-3_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.