2020 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Modelling and Development of Intelligent Systems
Assessing the nonlinearity of one signal, system, or dependence of one signal on another is of great importance in the design process. The article proposes an algorithm for simplified nonlinearity estimation of digital signals. The solution provides detailed information to constructors about existing nonlinearities, which in many cases is sufficient to make the correct choice of processing algorithms. The programming code of the algorithm is presented and its implementation is demonstrated on a set of basic functions. Several steps to further development of the proposed approach are outlined.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Haykin, S.: Signal processing in a nonlinear, nongaussian, and nonstationary world. In: Chollet, G., Esposito, A., Faundez-Zanuy, M., Marinaro, M. (eds.) NN 2004. LNCS (LNAI), vol. 3445, pp. 43–53. Springer, Heidelberg (2005). https://doi.org/10.1007/11520153_3 CrossRef Haykin, S.: Signal processing in a nonlinear, nongaussian, and nonstationary world. In: Chollet, G., Esposito, A., Faundez-Zanuy, M., Marinaro, M. (eds.) NN 2004. LNCS (LNAI), vol. 3445, pp. 43–53. Springer, Heidelberg (2005).
https://doi.org/10.1007/11520153_3
CrossRef
2.
3.
Zurück zum Zitat Xiong, X.Y.Z., Jiang, L.J., Schutt-Aine, J.E., Chew, W.C.: Volterra series-based time-domain macromodeling of nonlinear circuits. IEEE Trans. Compon. Packag. Manuf. Technol. 7(1), 39–49 (2017). https://doi.org/10.1109/TCPMT.2016.2627601 CrossRef Xiong, X.Y.Z., Jiang, L.J., Schutt-Aine, J.E., Chew, W.C.: Volterra series-based time-domain macromodeling of nonlinear circuits. IEEE Trans. Compon. Packag. Manuf. Technol.
7(1), 39–49 (2017).
https://doi.org/10.1109/TCPMT.2016.2627601
CrossRef
4.
Zurück zum Zitat Roweis, S.T., Ghahramani, Z.: Learning nonlinear dynamical system using the expectation-maximization algorithm. In Haykin, S. (ed.) Kalman Filtering and Neural Networks, First published: 01 October 2001. Wiley, Hoboken (2001). https://doi.org/10.1002/0471221546.ch6, https://cs.nyu.edu/~roweis/papers/nlds.pdf Roweis, S.T., Ghahramani, Z.: Learning nonlinear dynamical system using the expectation-maximization algorithm. In Haykin, S. (ed.) Kalman Filtering and Neural Networks, First published: 01 October 2001. Wiley, Hoboken (2001).
https://doi.org/10.1002/0471221546.ch6,
https://cs.nyu.edu/~roweis/papers/nlds.pdf
5.
Zurück zum Zitat Bar-Shalom, Y., Forthmann, T.: Tracking and Data Association. Academic Press, San Diego (1988) Bar-Shalom, Y., Forthmann, T.: Tracking and Data Association. Academic Press, San Diego (1988)
6.
Zurück zum Zitat Bar-Shalom, Y. (ed.): Multitarget-Multisensor Tracking: Advanced Applications. Norwood, Chicago (1990) Bar-Shalom, Y. (ed.): Multitarget-Multisensor Tracking: Advanced Applications. Norwood, Chicago (1990)
7.
Zurück zum Zitat Bar-Shalom, Y., Li, X.R.: Multitarget-Multisensor Tracking: Principles and Techniques. Artech House, Boston (1993) Bar-Shalom, Y., Li, X.R.: Multitarget-Multisensor Tracking: Principles and Techniques. Artech House, Boston (1993)
8.
Zurück zum Zitat Li, X.R.: Engineers’ Guide to Variable-Structure Multiple-Model Estimation and Tracking (2000). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.8701&rep=rep1&type=pdf Li, X.R.: Engineers’ Guide to Variable-Structure Multiple-Model Estimation and Tracking (2000).
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.8701&rep=rep1&type=pdf
9.
Zurück zum Zitat Blom, H.A.P., Bloem, E.A.: Joint IMM and coupled PDA to track closely spaced targets and to avoid track coalescence. In: Proceedings of the Seventh International Conference on Information Fusion, pp. 130–137 (2005) Blom, H.A.P., Bloem, E.A.: Joint IMM and coupled PDA to track closely spaced targets and to avoid track coalescence. In: Proceedings of the Seventh International Conference on Information Fusion, pp. 130–137 (2005)
10.
Zurück zum Zitat Beale, E.M.L.: Confidence regions in non-linear estimation. J. Roy. Stat. Soc. Ser. B (Methodol.) 22(1), 41–88 (1960) MathSciNetMATH Beale, E.M.L.: Confidence regions in non-linear estimation. J. Roy. Stat. Soc. Ser. B (Methodol.)
22(1), 41–88 (1960)
MathSciNetMATH
11.
Zurück zum Zitat Desoer, C.A., Wang, Y.T.: Foundations of feedback theory for nonlinear dynamical systems. IEEE Trans. Circ. Syst. 27(2), 104–123 (1980) MathSciNetCrossRef Desoer, C.A., Wang, Y.T.: Foundations of feedback theory for nonlinear dynamical systems. IEEE Trans. Circ. Syst.
27(2), 104–123 (1980)
MathSciNetCrossRef
12.
Zurück zum Zitat Bates, D.M., Watts, D.G.: Relative curvature measures of nonlinearity. J. Roy. Stat. Soc.: Ser. B (Methodol.) 42(1), 1–25 (1980). Wiley for the Royal Statistical Society. https://www.jstor.org/stable/2984733 MathSciNetMATH Bates, D.M., Watts, D.G.: Relative curvature measures of nonlinearity. J. Roy. Stat. Soc.: Ser. B (Methodol.)
42(1), 1–25 (1980). Wiley for the Royal Statistical Society.
https://www.jstor.org/stable/2984733
MathSciNetMATH
13.
Zurück zum Zitat Emancipator, K., Kroll, M.H.: A quantitative measure of nonlinearity. Clin. Chem. 39(5), 766–772 (1993) CrossRef Emancipator, K., Kroll, M.H.: A quantitative measure of nonlinearity. Clin. Chem.
39(5), 766–772 (1993)
CrossRef
14.
Zurück zum Zitat Tugnait, J.K.: Testing for linearity of noisy stationary signals. IEEE Trans. Signal Process. 42(10), 2742–2748 (1994) CrossRef Tugnait, J.K.: Testing for linearity of noisy stationary signals. IEEE Trans. Signal Process.
42(10), 2742–2748 (1994)
CrossRef
15.
Zurück zum Zitat Allgower, F.: Definition and Computation of a Nonlinearity Measure. IFAC Nonlinear Control Systems Design, Tahoe City, California, USA (1995) Allgower, F.: Definition and Computation of a Nonlinearity Measure. IFAC Nonlinear Control Systems Design, Tahoe City, California, USA (1995)
16.
Zurück zum Zitat Helbig, A., Marquardt, W., Allgower, F.: Nonlinearity measures: definition, computation and applications. J. Process Control 10, 113–123 (2000) CrossRef Helbig, A., Marquardt, W., Allgower, F.: Nonlinearity measures: definition, computation and applications. J. Process Control
10, 113–123 (2000)
CrossRef
17.
Zurück zum Zitat Barnett, A.G., Wolff, R.C.: A time-domain test for some types of nonlinearity. IEEE Trans. Signal Process. 53(1), 26–33 (2005) MathSciNetCrossRef Barnett, A.G., Wolff, R.C.: A time-domain test for some types of nonlinearity. IEEE Trans. Signal Process.
53(1), 26–33 (2005)
MathSciNetCrossRef
18.
Zurück zum Zitat Hosseini, S.M., Johansen, T.A., Fatehi, A.: Comparison of nonlinearity measures based on time series analysis for nonlinearity detection. Model. Identif. Control 32(4), 123–140 (2011). ISSN 1890-1328 CrossRef Hosseini, S.M., Johansen, T.A., Fatehi, A.: Comparison of nonlinearity measures based on time series analysis for nonlinearity detection. Model. Identif. Control
32(4), 123–140 (2011). ISSN 1890-1328
CrossRef
19.
Zurück zum Zitat Haber, R.: Nonlinearity test for dynamic process. In: IFAC Identification and system Parameter Estimation (1985) Haber, R.: Nonlinearity test for dynamic process. In: IFAC Identification and system Parameter Estimation (1985)
20.
Zurück zum Zitat Smith, R.: A mutual information approach to calculating nonlinearity. The ISI’s Journal for the Rapid Dissemination of Statistics Research. https://doi.org/10.100X/sta.0000, ( http://wileyonlinelibrary.com) Smith, R.: A mutual information approach to calculating nonlinearity. The ISI’s Journal for the Rapid Dissemination of Statistics Research.
https://doi.org/10.100X/sta.0000, (
http://wileyonlinelibrary.com)
21.
Zurück zum Zitat Liu, Y., Li, X.R.: Measure of nonlinearity for estimation. IEEE Trans. Signal Process. 63(9), 2377–2388 (2015) MathSciNetCrossRef Liu, Y., Li, X.R.: Measure of nonlinearity for estimation. IEEE Trans. Signal Process.
63(9), 2377–2388 (2015)
MathSciNetCrossRef
22.
Zurück zum Zitat Shi, W., Cheung, C.: Performance evaluation of line simplification algorithms for vector generalization. Cartographic J. 43(1), 27–44 (2006) CrossRef Shi, W., Cheung, C.: Performance evaluation of line simplification algorithms for vector generalization. Cartographic J.
43(1), 27–44 (2006)
CrossRef
23.
Zurück zum Zitat Kotchoni, R.: Detecting and measuring nonlinearity. MDPI, Econometrics 6, 37 (2018). https://doi.org/10.3390/econometrics6030037 CrossRef Kotchoni, R.: Detecting and measuring nonlinearity. MDPI, Econometrics
6, 37 (2018).
https://doi.org/10.3390/econometrics6030037
CrossRef
- Titel
- Nonlinearity Estimation of Digital Signals
- DOI
- https://doi.org/10.1007/978-3-030-39237-6_5
- Autor:
-
Kiril Alexiev
- Sequenznummer
- 5