Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2016

01.10.2016 | Original Research

Nonlocal Cauchy problems for a class of implicit impulsive fractional relaxation differential systems

verfasst von: Yuruo Zhang, JinRong Wang

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we discuss nonlocal Cauchy problems for a class of implicit impulsive fractional relaxation differential systems. By using vectorial version fixed point theorems and splitting the Lipschitz or linear growth conditions on the nonlinear terms into two parts and applying the techniques that use convergent to zero matrix and vector-valued norm via boundedness and continuity of Mittag-Leffler functions, two couple existence results for the solutions are presented in a complete generalized metric space or a generalized Banach space.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)MATH
2.
Zurück zum Zitat Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, London (2012)CrossRef Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, London (2012)CrossRef
3.
Zurück zum Zitat Diethelm, K.: The analysis of fractional differential equations, Lecture Notes in Mathematics (2010) Diethelm, K.: The analysis of fractional differential equations, Lecture Notes in Mathematics (2010)
4.
Zurück zum Zitat Prudnikov, A.P., Brychkov, YuA, Marichev, O.I.: Integrals and Series, Elementary Functions, vol. 1. Nauka, Moscow (1981). (in Russian)MATH Prudnikov, A.P., Brychkov, YuA, Marichev, O.I.: Integrals and Series, Elementary Functions, vol. 1. Nauka, Moscow (1981). (in Russian)MATH
5.
Zurück zum Zitat Klafter, J., Lim, S.C., Metzler, R.: Fractional Dynamics, Recent Advances. World Scientific, Singapore (2011)CrossRefMATH Klafter, J., Lim, S.C., Metzler, R.: Fractional Dynamics, Recent Advances. World Scientific, Singapore (2011)CrossRefMATH
6.
Zurück zum Zitat Sandev, T., Metzler, R., Dubbeldam, J.: Generalized space-time fractional diffusion equation with composite fractional time derivative. Phys. A 391, 2527–2542 (2012)MathSciNetCrossRef Sandev, T., Metzler, R., Dubbeldam, J.: Generalized space-time fractional diffusion equation with composite fractional time derivative. Phys. A 391, 2527–2542 (2012)MathSciNetCrossRef
7.
Zurück zum Zitat Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)MATH Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)MATH
8.
Zurück zum Zitat Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)MATH Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)MATH
9.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH
10.
Zurück zum Zitat Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore (2000)CrossRefMATH Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore (2000)CrossRefMATH
11.
Zurück zum Zitat Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, HEP, New York (2011) Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, HEP, New York (2011)
12.
Zurück zum Zitat Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)CrossRefMATH Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)CrossRefMATH
13.
Zurück zum Zitat Wang, R.N., Chen, D.H., Xiao, T.J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235 (2012)MathSciNetCrossRefMATH Wang, R.N., Chen, D.H., Xiao, T.J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235 (2012)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Abbas, S., Benchohra, M., Rivero, M., Trujillo, J.J.: Existence and stability results for nonlinear fractional order Riemann–Liouville Volterra–Stieltjes quadratic integral equations. Appl. Math. Comput. 247, 319–328 (2014)MathSciNetCrossRefMATH Abbas, S., Benchohra, M., Rivero, M., Trujillo, J.J.: Existence and stability results for nonlinear fractional order Riemann–Liouville Volterra–Stieltjes quadratic integral equations. Appl. Math. Comput. 247, 319–328 (2014)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Wang, Q., Lu, D., Fang, Y.: Stability analysis of impulsive fractional differential systems with delay. Appl. Math. Lett. 40, 1–6 (2015)MathSciNetCrossRefMATH Wang, Q., Lu, D., Fang, Y.: Stability analysis of impulsive fractional differential systems with delay. Appl. Math. Lett. 40, 1–6 (2015)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Debbouche, A., Torres, D.F.M.: Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces. Int. J. Control 86, 949–963 (2013)MathSciNetCrossRefMATH Debbouche, A., Torres, D.F.M.: Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces. Int. J. Control 86, 949–963 (2013)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Ma, Q., Wang, J., Wang, R., Ke, X.: Study on some qualitative properties for solutions of a certain two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Lett. 36, 7–13 (2014)MathSciNetCrossRefMATH Ma, Q., Wang, J., Wang, R., Ke, X.: Study on some qualitative properties for solutions of a certain two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Lett. 36, 7–13 (2014)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Ma, Q., Wang, R., Wang, J., Ma, Y.: Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Comput. 257, 436–445 (2014)MathSciNetCrossRefMATH Ma, Q., Wang, R., Wang, J., Ma, Y.: Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Comput. 257, 436–445 (2014)MathSciNetCrossRefMATH
19.
20.
Zurück zum Zitat Bai, C., Fang, J.: The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations. Appl. Math. Comput. 150, 611–621 (2004)MathSciNetCrossRefMATH Bai, C., Fang, J.: The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations. Appl. Math. Comput. 150, 611–621 (2004)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Mophou, G.M., N’Guérékata, G.M.: Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay. Appl. Math. Comput. 216, 61–69 (2010)MathSciNetCrossRefMATH Mophou, G.M., N’Guérékata, G.M.: Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay. Appl. Math. Comput. 216, 61–69 (2010)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Gejji, V.D., Jafari, H.: Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives. J. Math. Anal. Appl. 328, 1026–1033 (2007)MathSciNetCrossRefMATH Gejji, V.D., Jafari, H.: Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives. J. Math. Anal. Appl. 328, 1026–1033 (2007)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)MathSciNetCrossRefMATH Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Su, X.: Boundary value problem for a coupled systerm of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64–69 (2009)MathSciNetCrossRef Su, X.: Boundary value problem for a coupled systerm of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64–69 (2009)MathSciNetCrossRef
25.
Zurück zum Zitat Jiang, W.: Solvability for a coupled system of fractional differential equations at resonance. Nonlinear Anal.:RWA 13, 2285–2292 (2012)MathSciNetCrossRefMATH Jiang, W.: Solvability for a coupled system of fractional differential equations at resonance. Nonlinear Anal.:RWA 13, 2285–2292 (2012)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Sun, S., Li, Q., Li, Y.: Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations. Comput. Math. Appl. 64, 3310–3320 (2012)MathSciNetCrossRefMATH Sun, S., Li, Q., Li, Y.: Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations. Comput. Math. Appl. 64, 3310–3320 (2012)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Liu, Y.: Existence of solutions for impulsive differential models on half lines involving Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 18, 2604–2625 (2013)MathSciNetCrossRefMATH Liu, Y.: Existence of solutions for impulsive differential models on half lines involving Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 18, 2604–2625 (2013)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Liu, Y.: Existence and uniqueness of solutions for a class of initial value problems of fractional differential systems on half lines. Bull. Sci. Math. 137, 1048–1071 (2013)MathSciNetCrossRefMATH Liu, Y.: Existence and uniqueness of solutions for a class of initial value problems of fractional differential systems on half lines. Bull. Sci. Math. 137, 1048–1071 (2013)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Butkovskii, A.G., Postnov, S.S., Postnova, E.A.: Fractional integro-differential calculus and its control-theoretical applications. II: fractional dynamic systems: modeling and hardware implementation. Automat. Remote Control 74, 725–749 (2013)MathSciNetCrossRefMATH Butkovskii, A.G., Postnov, S.S., Postnova, E.A.: Fractional integro-differential calculus and its control-theoretical applications. II: fractional dynamic systems: modeling and hardware implementation. Automat. Remote Control 74, 725–749 (2013)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Liu, S., Wang, G., Zhang, L.: Existence results for a coupled system of nonlinear neutral fractional differential equations. Appl. Math. Lett. 26, 1120–1124 (2013)MathSciNetCrossRefMATH Liu, S., Wang, G., Zhang, L.: Existence results for a coupled system of nonlinear neutral fractional differential equations. Appl. Math. Lett. 26, 1120–1124 (2013)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Fečkan, M., Zhou, Y., Wang, J.: On the concept and existence of solutions for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)MathSciNetCrossRefMATH Fečkan, M., Zhou, Y., Wang, J.: On the concept and existence of solutions for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Boucherif, A., Precup, R.: On the nonlocal intial value problem for first order differential equations. Fixed Point Theory 4, 205–212 (2003)MathSciNetMATH Boucherif, A., Precup, R.: On the nonlocal intial value problem for first order differential equations. Fixed Point Theory 4, 205–212 (2003)MathSciNetMATH
33.
Zurück zum Zitat Nica, O., Precup, R.: On the nonlocal initial value problem for first order differential systems. Stud. Univ. Babeş-Bolyai Math. 56, 125–137 (2011)MathSciNetMATH Nica, O., Precup, R.: On the nonlocal initial value problem for first order differential systems. Stud. Univ. Babeş-Bolyai Math. 56, 125–137 (2011)MathSciNetMATH
34.
Zurück zum Zitat Nica, O., Infante, G., Pietramala, P.: Existence results for impulsive systems with initial nonlocal conditions. Math. Model. Anal. 18, 599–611 (2013)MathSciNetCrossRefMATH Nica, O., Infante, G., Pietramala, P.: Existence results for impulsive systems with initial nonlocal conditions. Math. Model. Anal. 18, 599–611 (2013)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Wang, J., Fec̆kan, M., Zhou, Y.: Presentation of solutions of impulsive fractional Langevin equations and existence results. Eur. Phys. J. Spec. Top. 222, 1855–1872 (2013) Wang, J., Fec̆kan, M., Zhou, Y.: Presentation of solutions of impulsive fractional Langevin equations and existence results. Eur. Phys. J. Spec. Top. 222, 1855–1872 (2013)
36.
Zurück zum Zitat Precup, R.: The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comput. Model. 49, 703–708 (2009)MathSciNetCrossRefMATH Precup, R.: The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comput. Model. 49, 703–708 (2009)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Nica, O.: Nonlocal initial value problems for first order differential systems. Fixed Point Theory 13, 603–612 (2012)MathSciNetMATH Nica, O.: Nonlocal initial value problems for first order differential systems. Fixed Point Theory 13, 603–612 (2012)MathSciNetMATH
38.
39.
40.
Zurück zum Zitat Wang, J., Zhang, Y.: Analysis of fractional order differential coupled systems. Math. Meth. Appl. Sci. 38, 3322–3338 (2015)MathSciNetCrossRefMATH Wang, J., Zhang, Y.: Analysis of fractional order differential coupled systems. Math. Meth. Appl. Sci. 38, 3322–3338 (2015)MathSciNetCrossRefMATH
Metadaten
Titel
Nonlocal Cauchy problems for a class of implicit impulsive fractional relaxation differential systems
verfasst von
Yuruo Zhang
JinRong Wang
Publikationsdatum
01.10.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2016
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-015-0943-1

Weitere Artikel der Ausgabe 1-2/2016

Journal of Applied Mathematics and Computing 1-2/2016 Zur Ausgabe