Skip to main content

2019 | OriginalPaper | Buchkapitel

14. Nonnegative Matrix Factorization

verfasst von : Ke-Lin Du, M. N. S. Swamy

Erschienen in: Neural Networks and Statistical Learning

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Low-rank matrix factorization or factor analysis is an important task that is helpful in the analysis of high-dimensional real-world data such as dimension reduction, data compression, feature extraction, and information retrieval. Nonnegative matrix factorization is a special low-rank factorization technique for nonnegative data. This chapter is dedicated to nonnegative matrix factorization. Other matrix decomposition methods, such as Nystrom method and CUR matrix decomposition, are also introduced in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Banerjee, A., Merugu, S., Dhillon, I. S., & Ghosh, J. (2005). Clustering with Bregman divergences. Journal of Machine Learning Research, 6, 1705–1749.MathSciNetMATH Banerjee, A., Merugu, S., Dhillon, I. S., & Ghosh, J. (2005). Clustering with Bregman divergences. Journal of Machine Learning Research, 6, 1705–1749.MathSciNetMATH
2.
Zurück zum Zitat Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P., & Plemmons, R. J. (2007). Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis, 52(1), 155–173.MathSciNetMATHCrossRef Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P., & Plemmons, R. J. (2007). Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis, 52(1), 155–173.MathSciNetMATHCrossRef
3.
Zurück zum Zitat Blumensath, T. (2016). Directional clustering through matrix factorization. IEEE Transactions on Neural Networks and Learning Systems, 27(10), 2095–2107.MathSciNetCrossRef Blumensath, T. (2016). Directional clustering through matrix factorization. IEEE Transactions on Neural Networks and Learning Systems, 27(10), 2095–2107.MathSciNetCrossRef
4.
Zurück zum Zitat Cai, D., He, X., & Han, J. (2011). Locally consistent concept factorization for document clustering. IEEE Transactions on Knowledge and Data Engineering, 23(6), 902–913.CrossRef Cai, D., He, X., & Han, J. (2011). Locally consistent concept factorization for document clustering. IEEE Transactions on Knowledge and Data Engineering, 23(6), 902–913.CrossRef
5.
Zurück zum Zitat Cai, D., He, X., Han, J., & Huang, T. S. (2011). Graph regularized nonnegative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1548–1560.CrossRef Cai, D., He, X., Han, J., & Huang, T. S. (2011). Graph regularized nonnegative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1548–1560.CrossRef
6.
Zurück zum Zitat Chen, Y., Rege, M., Dong, M., & Hua, J. (2008). Non-negative matrix factorization for semi-supervised data clustering. Knowledge and Information Systems, 17(3), 355–379.CrossRef Chen, Y., Rege, M., Dong, M., & Hua, J. (2008). Non-negative matrix factorization for semi-supervised data clustering. Knowledge and Information Systems, 17(3), 355–379.CrossRef
7.
Zurück zum Zitat Cichocki, A., & Anh-Huy, P. (2009). Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 92(3), 708–721.CrossRef Cichocki, A., & Anh-Huy, P. (2009). Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 92(3), 708–721.CrossRef
8.
Zurück zum Zitat Cichocki, A., & Zdunek, R. (2006). NMFLAB for signal and image processing. Technical Report, Laboratory for Advanced Brain Signal Processing, BSI RIKEN, Saitama, Japan. Cichocki, A., & Zdunek, R. (2006). NMFLAB for signal and image processing. Technical Report, Laboratory for Advanced Brain Signal Processing, BSI RIKEN, Saitama, Japan.
9.
Zurück zum Zitat Cichocki, A., & Zdunek, R. (2007). Multilayer nonnegative matrix factorization using projected gradient approaches. International Journal of Neural Systems, 17(6), 431–446.CrossRef Cichocki, A., & Zdunek, R. (2007). Multilayer nonnegative matrix factorization using projected gradient approaches. International Journal of Neural Systems, 17(6), 431–446.CrossRef
10.
Zurück zum Zitat Cichocki, A., Zdunek, R., & Amari, S. (2006). New algorithms for non-negative matrix factorization in applications to blind source separation. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (Vol. 5, pp. 621–624). Toulouse, France. Cichocki, A., Zdunek, R., & Amari, S. (2006). New algorithms for non-negative matrix factorization in applications to blind source separation. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (Vol. 5, pp. 621–624). Toulouse, France.
11.
Zurück zum Zitat Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harshman, R. A., (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 416, 391–407. Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harshman, R. A., (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 416, 391–407.
12.
Zurück zum Zitat Dhillon, I. S., & Sra, S. (2006). Generalized nonnegative matrix approximations with Bregman divergences. In Advances in neural information processing systems (Vol. 18, pp. 283–290). Dhillon, I. S., & Sra, S. (2006). Generalized nonnegative matrix approximations with Bregman divergences. In Advances in neural information processing systems (Vol. 18, pp. 283–290).
13.
Zurück zum Zitat Ding, C., Li, T., Peng, W., & Park, H. (2006). Orthogonal nonnegative matrix tri-factorizations for clustering. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06) (pp. 126–135). Philadelphia, PA. Ding, C., Li, T., Peng, W., & Park, H. (2006). Orthogonal nonnegative matrix tri-factorizations for clustering. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06) (pp. 126–135). Philadelphia, PA.
14.
Zurück zum Zitat Ding, C., Li, T., & Jordan, M. I. (2010). Convex and semi-nonnegative matrix factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1), 45–55.CrossRef Ding, C., Li, T., & Jordan, M. I. (2010). Convex and semi-nonnegative matrix factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1), 45–55.CrossRef
15.
Zurück zum Zitat Ding, C. H., He, X., & Simon, H. D. (2005). On the equivalence of nonnegative matrix factorization and spectral clustering. In Proceedings of the SIAM International Conference on Data Mining (pp. 606–610). Newport Beach, CA. Ding, C. H., He, X., & Simon, H. D. (2005). On the equivalence of nonnegative matrix factorization and spectral clustering. In Proceedings of the SIAM International Conference on Data Mining (pp. 606–610). Newport Beach, CA.
16.
Zurück zum Zitat Donoho, D., & Stodden, V. (2003). When does nonnegative matrix factorization give a correct decomposition into parts? In Advances in neural information processing systems (Vol. 16, pp. 1141–1148). Vancouver, Canada; Cambridge, MA: MIT Press. Donoho, D., & Stodden, V. (2003). When does nonnegative matrix factorization give a correct decomposition into parts? In Advances in neural information processing systems (Vol. 16, pp. 1141–1148). Vancouver, Canada; Cambridge, MA: MIT Press.
17.
Zurück zum Zitat Drineas, P., & Mahoney, M. W. (2005). On the Nystrom method for approximating a gram matrix for improved kernel-based learning. Journal of Machine Learning Research, 6, 2153–2175.MathSciNetMATH Drineas, P., & Mahoney, M. W. (2005). On the Nystrom method for approximating a gram matrix for improved kernel-based learning. Journal of Machine Learning Research, 6, 2153–2175.MathSciNetMATH
18.
Zurück zum Zitat Drineas, P., Kannan, R., & Mahoney, M. W. (2006). Fast Monte Carlo algorithms for matrices. III: Computing a compressed approximate matrix decomposition. SIAM Journal on Computing, 36(1), 184–206. Drineas, P., Kannan, R., & Mahoney, M. W. (2006). Fast Monte Carlo algorithms for matrices. III: Computing a compressed approximate matrix decomposition. SIAM Journal on Computing, 36(1), 184–206.
19.
Zurück zum Zitat Drineas, P., Mahoney, M. W., & Muthukrishnan, S. (2006). Subspace sampling and relative-error matrix approximation: Column-based methods. In Proceedings of the 10th Annual International Workshop on Randomization and Computation (RANDOM), LNCS (Vol. 4110, pp. 316–326). Berlin: Springer. Drineas, P., Mahoney, M. W., & Muthukrishnan, S. (2006). Subspace sampling and relative-error matrix approximation: Column-based methods. In Proceedings of the 10th Annual International Workshop on Randomization and Computation (RANDOM), LNCS (Vol. 4110, pp. 316–326). Berlin: Springer.
20.
Zurück zum Zitat Drineas, P., Mahoney, M. W., & Muthukrishnan, S. (2007). Relative-error CUR matrix decompositions. Technical Report, Department of Mathematics, Yale University. Drineas, P., Mahoney, M. W., & Muthukrishnan, S. (2007). Relative-error CUR matrix decompositions. Technical Report, Department of Mathematics, Yale University.
21.
Zurück zum Zitat Drineas, P., Mahoney, M. W., & Muthukrishnan, S. (2008). Relative-error CUR matrix decompositions. SIAM Journal on Matrix Analysis and Applications, 30(2), 844–881.MathSciNetMATHCrossRef Drineas, P., Mahoney, M. W., & Muthukrishnan, S. (2008). Relative-error CUR matrix decompositions. SIAM Journal on Matrix Analysis and Applications, 30(2), 844–881.MathSciNetMATHCrossRef
22.
Zurück zum Zitat Drineas, P., Magdon-Ismail, M., Mahoney, M. W., & Woodruff, D. P. (2012). Fast approximation of matrix coherence and statistical leverage. Journal of Machine Learning Research, 13, 3441–3472.MathSciNetMATH Drineas, P., Magdon-Ismail, M., Mahoney, M. W., & Woodruff, D. P. (2012). Fast approximation of matrix coherence and statistical leverage. Journal of Machine Learning Research, 13, 3441–3472.MathSciNetMATH
23.
Zurück zum Zitat Gillis, N. (2012). Sparse and unique nonnegative matrix factorization through data preprocessing. Journal of Machine Learning Research, 13, 3349–3386.MathSciNetMATH Gillis, N. (2012). Sparse and unique nonnegative matrix factorization through data preprocessing. Journal of Machine Learning Research, 13, 3349–3386.MathSciNetMATH
24.
Zurück zum Zitat Gillis, N., & Luce, R. (2014). Robust near-separable nonnegative matrix factorization using linear optimization. Journal of Machine Learning Research, 15, 1249–1280.MathSciNetMATH Gillis, N., & Luce, R. (2014). Robust near-separable nonnegative matrix factorization using linear optimization. Journal of Machine Learning Research, 15, 1249–1280.MathSciNetMATH
25.
Zurück zum Zitat Goreinov, S. A., Tyrtyshnikov, E. E., & Zamarashkin, N. L. (1997). A theory of pseudoskeleton approximations. Linear Algebra and Its Applications, 261, 1–21.MathSciNetMATHCrossRef Goreinov, S. A., Tyrtyshnikov, E. E., & Zamarashkin, N. L. (1997). A theory of pseudoskeleton approximations. Linear Algebra and Its Applications, 261, 1–21.MathSciNetMATHCrossRef
26.
Zurück zum Zitat Guan, N., Tao, D., Luo, Z., & Yuan, B. (2012). Online nonnegative matrix factorization with robust stochastic approximation. IEEE Transactions on Neural Networks and Learning Systems, 23(7), 1087–1099.CrossRef Guan, N., Tao, D., Luo, Z., & Yuan, B. (2012). Online nonnegative matrix factorization with robust stochastic approximation. IEEE Transactions on Neural Networks and Learning Systems, 23(7), 1087–1099.CrossRef
27.
Zurück zum Zitat Guan, N., Liu, T., Zhang, Y., Tao, D., & Davis, L. S. (2019). Truncated Cauchy non-negative matrix factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(1), 246–259.CrossRef Guan, N., Liu, T., Zhang, Y., Tao, D., & Davis, L. S. (2019). Truncated Cauchy non-negative matrix factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(1), 246–259.CrossRef
28.
Zurück zum Zitat Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2), 217–288.MathSciNetMATHCrossRef Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2), 217–288.MathSciNetMATHCrossRef
29.
Zurück zum Zitat He, Y., Lu, H., Huang, L., & Xie, S. (2014). Pairwise constrained concept factorization for data representation. Neural Networks, 52, 1–17.MATHCrossRef He, Y., Lu, H., Huang, L., & Xie, S. (2014). Pairwise constrained concept factorization for data representation. Neural Networks, 52, 1–17.MATHCrossRef
30.
Zurück zum Zitat He, Z., Xie, S., Zdunek, R., Zhou, G., & Cichocki, A. (2011). Symmetric nonnegative matrix factorization: Algorithms and applications to probabilistic clustering. IEEE Transactions on Neural Networks, 22(12), 2117–2131.CrossRef He, Z., Xie, S., Zdunek, R., Zhou, G., & Cichocki, A. (2011). Symmetric nonnegative matrix factorization: Algorithms and applications to probabilistic clustering. IEEE Transactions on Neural Networks, 22(12), 2117–2131.CrossRef
31.
Zurück zum Zitat Hosoda, K., Watanabe, M., Wersing, H., Korner, E., Tsujino, H., Tamura, H., et al. (2009). A model for learning topographically organized parts-based representations of objects in visual cortex: Topographic nonnegative matrix factorization. Neural Computation, 21, 2605–2633.MathSciNetMATHCrossRef Hosoda, K., Watanabe, M., Wersing, H., Korner, E., Tsujino, H., Tamura, H., et al. (2009). A model for learning topographically organized parts-based representations of objects in visual cortex: Topographic nonnegative matrix factorization. Neural Computation, 21, 2605–2633.MathSciNetMATHCrossRef
32.
Zurück zum Zitat Hoyer, P. O. (2004). Nonnegative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5, 1457–1469.MATH Hoyer, P. O. (2004). Nonnegative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5, 1457–1469.MATH
33.
Zurück zum Zitat Hsieh, C.-J., & Dhillon, I. S. (2011). Fast coordinate descent methods with variable selection for non-negative matrix factorization. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1064–1072). Hsieh, C.-J., & Dhillon, I. S. (2011). Fast coordinate descent methods with variable selection for non-negative matrix factorization. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1064–1072).
34.
Zurück zum Zitat Keprt, A., & Snasel, V. (2005). Binary factor analysis with genetic algorithms. In Proceedings of the 4th IEEE International Workshop on Soft Computing as Transdisciplinary Science and Technology (WSTST), AINSC (Vol. 29, pp. 1259–1268). Muroran, Japan; Berlin: Springer. Keprt, A., & Snasel, V. (2005). Binary factor analysis with genetic algorithms. In Proceedings of the 4th IEEE International Workshop on Soft Computing as Transdisciplinary Science and Technology (WSTST), AINSC (Vol. 29, pp. 1259–1268). Muroran, Japan; Berlin: Springer.
35.
Zurück zum Zitat Kim, D., Sra, S., & Dhillon, I. S. (2008). Fast projection-based methods for the least squares nonnegative matrix approximation problem. Statistical Analysis and Data Mining, 1, 38–51.MathSciNetCrossRef Kim, D., Sra, S., & Dhillon, I. S. (2008). Fast projection-based methods for the least squares nonnegative matrix approximation problem. Statistical Analysis and Data Mining, 1, 38–51.MathSciNetCrossRef
36.
Zurück zum Zitat Kimura, K., Kudo, M., & Tanaka, Y. (2016). A column-wise update algorithm for nonnegative matrix factorization in Bregman divergence with an orthogonal constraint. Machine Learning, 103, 285–306.MathSciNetMATHCrossRef Kimura, K., Kudo, M., & Tanaka, Y. (2016). A column-wise update algorithm for nonnegative matrix factorization in Bregman divergence with an orthogonal constraint. Machine Learning, 103, 285–306.MathSciNetMATHCrossRef
37.
Zurück zum Zitat Kompass, R. (2007). A generalized divergence measure for nonnegative matrix factorization. Neural Computation, 19(3), 780–791.MathSciNetMATHCrossRef Kompass, R. (2007). A generalized divergence measure for nonnegative matrix factorization. Neural Computation, 19(3), 780–791.MathSciNetMATHCrossRef
38.
Zurück zum Zitat Kong, D., Ding, C., & Huang, H. (2011). Robust nonnegative matrix factorization using \(l_{2,1}\)-norm. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management (pp. 673–682). Glasgow, UK. Kong, D., Ding, C., & Huang, H. (2011). Robust nonnegative matrix factorization using \(l_{2,1}\)-norm. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management (pp. 673–682). Glasgow, UK.
39.
Zurück zum Zitat Kuang, D., Ding, C., & Park, H. (2012). Symmetric nonnegative matrix factorization for graph clustering. In Proceedings of the 12th SIAM International Conference on Data Mining (pp. 106–117). Anaheim, CA. Kuang, D., Ding, C., & Park, H. (2012). Symmetric nonnegative matrix factorization for graph clustering. In Proceedings of the 12th SIAM International Conference on Data Mining (pp. 106–117). Anaheim, CA.
40.
Zurück zum Zitat Laurberg, H., Christensen, M. G., Plumbley, M. D., Hansen, L. K., & Jensen, S. H. (2008). Theorems on positive data: on the uniqueness of NMF. Computational Intelligence and Neuroscience, 2008, Article ID 764206. Laurberg, H., Christensen, M. G., Plumbley, M. D., Hansen, L. K., & Jensen, S. H. (2008). Theorems on positive data: on the uniqueness of NMF. Computational Intelligence and Neuroscience, 2008, Article ID 764206.
41.
Zurück zum Zitat Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by nonnegative matrix factorization. Nature, 401(6755), 788–791.MATHCrossRef Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by nonnegative matrix factorization. Nature, 401(6755), 788–791.MATHCrossRef
42.
Zurück zum Zitat Lee, H., Yoo, J., & Choi, S. (2010). Semi-supervised nonnegative matrix factorization. IEEE Signal Processing Letters, 17(1), 4–7.CrossRef Lee, H., Yoo, J., & Choi, S. (2010). Semi-supervised nonnegative matrix factorization. IEEE Signal Processing Letters, 17(1), 4–7.CrossRef
43.
Zurück zum Zitat Li, L., Lebanon, G., & Park, H. (2012). Fast Bregman divergence NMF using Taylor expansion and coordinate descent. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 307–315). Li, L., Lebanon, G., & Park, H. (2012). Fast Bregman divergence NMF using Taylor expansion and coordinate descent. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 307–315).
44.
Zurück zum Zitat Li, L.-X., Wu, L., Zhang, H.-S., & Wu, F.-X. (2014). A fast algorithm for nonnegative matrix factorization and its convergence. IEEE Transactions on Neural Networks and Learning Systems, 25(10), 1855–1863.CrossRef Li, L.-X., Wu, L., Zhang, H.-S., & Wu, F.-X. (2014). A fast algorithm for nonnegative matrix factorization and its convergence. IEEE Transactions on Neural Networks and Learning Systems, 25(10), 1855–1863.CrossRef
45.
Zurück zum Zitat Li, M., Bi, W., Kwok, J. T., & Lu, B.-L. (2015). Large-scale Nystrom kernel matrix approximation using randomized SVD. IEEE Transactions on Neural Networks and Learning Systems, 26(1), 152–164.MathSciNetCrossRef Li, M., Bi, W., Kwok, J. T., & Lu, B.-L. (2015). Large-scale Nystrom kernel matrix approximation using randomized SVD. IEEE Transactions on Neural Networks and Learning Systems, 26(1), 152–164.MathSciNetCrossRef
46.
Zurück zum Zitat Li, X., & Pang, Y. (2010). Deterministic column-based matrix decomposition. IEEE Transactions on Knowledge and Data Engineering, 22(1), 145–149.MathSciNetCrossRef Li, X., & Pang, Y. (2010). Deterministic column-based matrix decomposition. IEEE Transactions on Knowledge and Data Engineering, 22(1), 145–149.MathSciNetCrossRef
47.
48.
Zurück zum Zitat Lin, C.-J. (2007). On the convergence of multiplicative update algorithms for non-negative matrix factorization. IEEE Transactions on Neural Networks, 18(6), 1589–1596.CrossRef Lin, C.-J. (2007). On the convergence of multiplicative update algorithms for non-negative matrix factorization. IEEE Transactions on Neural Networks, 18(6), 1589–1596.CrossRef
49.
Zurück zum Zitat Liu, H., Wu, Z., Li, X., Cai, D., & Huang, T. S. (2012). Constrained nonnegative matrix factorization for image representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7), 1299–1311.CrossRef Liu, H., Wu, Z., Li, X., Cai, D., & Huang, T. S. (2012). Constrained nonnegative matrix factorization for image representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7), 1299–1311.CrossRef
50.
Zurück zum Zitat Liu, H., Li, X., & Zheng, X. (2013). Solving non-negative matrix factorization by alternating least squares with a modified strategy. Data Mining and Knowledge Discovery, 26(3), 435–451.MathSciNetMATHCrossRef Liu, H., Li, X., & Zheng, X. (2013). Solving non-negative matrix factorization by alternating least squares with a modified strategy. Data Mining and Knowledge Discovery, 26(3), 435–451.MathSciNetMATHCrossRef
51.
Zurück zum Zitat Liu, T., Gong, M., & Tao, D. (2017). Large-cone nonnegative matrix factorization. IEEE Transactions on Neural Networks and Learning Systems, 28(9), 2129–2142.MathSciNet Liu, T., Gong, M., & Tao, D. (2017). Large-cone nonnegative matrix factorization. IEEE Transactions on Neural Networks and Learning Systems, 28(9), 2129–2142.MathSciNet
52.
Zurück zum Zitat Mirzal, A. (2014). A convergent algorithm for orthogonal nonnegative matrix factorization. Journal of Computational and Applied Mathematics, 260, 149–166.MathSciNetMATHCrossRef Mirzal, A. (2014). A convergent algorithm for orthogonal nonnegative matrix factorization. Journal of Computational and Applied Mathematics, 260, 149–166.MathSciNetMATHCrossRef
53.
Zurück zum Zitat Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2), 111–126.CrossRef Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2), 111–126.CrossRef
54.
Zurück zum Zitat Pascual-Montano, A., Carazo, J. M., Kochi, K., Lehmann, D., & Pascual-Marqui, R. D. (2006). Nonsmooth nonnegative matrix factorization (nsNMF). EEE Transactions on Pattern Analysis and Machine Intelligence, 28(3), 403–415.CrossRef Pascual-Montano, A., Carazo, J. M., Kochi, K., Lehmann, D., & Pascual-Marqui, R. D. (2006). Nonsmooth nonnegative matrix factorization (nsNMF). EEE Transactions on Pattern Analysis and Machine Intelligence, 28(3), 403–415.CrossRef
55.
Zurück zum Zitat Peharz, R., & Pernkopf, F. (2012). Sparse nonnegative matrix factorization with \(l^0\)-constraints. Neurocomputing, 80, 38–46.CrossRef Peharz, R., & Pernkopf, F. (2012). Sparse nonnegative matrix factorization with \(l^0\)-constraints. Neurocomputing, 80, 38–46.CrossRef
56.
Zurück zum Zitat Sajda, P., Du, S., Brown, T. R., Stoyanova, R., Shungu, D. C., Mao, X., et al. (2004). Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. IEEE Transactions on Medical Imaging, 23(12), 1453–1465.CrossRef Sajda, P., Du, S., Brown, T. R., Stoyanova, R., Shungu, D. C., Mao, X., et al. (2004). Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. IEEE Transactions on Medical Imaging, 23(12), 1453–1465.CrossRef
57.
Zurück zum Zitat Vavasis, S. A. (2009). On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization, 20(3), 1364–1377.MathSciNetMATHCrossRef Vavasis, S. A. (2009). On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization, 20(3), 1364–1377.MathSciNetMATHCrossRef
58.
Zurück zum Zitat Wang, D., & Lu, H. (2013). On-line learning parts-based representation via incremental orthogonal projective non-negative matrix factorization. Signal Processing, 93, 1608–1623.CrossRef Wang, D., & Lu, H. (2013). On-line learning parts-based representation via incremental orthogonal projective non-negative matrix factorization. Signal Processing, 93, 1608–1623.CrossRef
59.
Zurück zum Zitat Wang, F., Li, T., & Zhang, C. (2008). Semi-supervised clustering via matrix factorization. In Proceedings of the SIAM International Conference on Data Mining (pp. 1–12). Atlanta, GA. Wang, F., Li, T., & Zhang, C. (2008). Semi-supervised clustering via matrix factorization. In Proceedings of the SIAM International Conference on Data Mining (pp. 1–12). Atlanta, GA.
60.
Zurück zum Zitat Wang, J. J.-Y., & Gao, X. (2015). Max–min distance nonnegative matrix factorization. Neural Networks, 61, 75–84.MATHCrossRef Wang, J. J.-Y., & Gao, X. (2015). Max–min distance nonnegative matrix factorization. Neural Networks, 61, 75–84.MATHCrossRef
61.
Zurück zum Zitat Wang, S., & Zhang, Z. (2013). Improving CUR matrix decomposition and the Nystrom approximation via adaptive sampling. Journal of Machine Learning Research, 14, 2729–2769.MathSciNetMATH Wang, S., & Zhang, Z. (2013). Improving CUR matrix decomposition and the Nystrom approximation via adaptive sampling. Journal of Machine Learning Research, 14, 2729–2769.MathSciNetMATH
62.
Zurück zum Zitat Wang, S., Zhang, Z., & Zhang, T. (2016). Towards more efficient SPSD matrix approximation and CUR matrix decomposition. Journal of Machine Learning Research, 17, 1–49.MathSciNetMATH Wang, S., Zhang, Z., & Zhang, T. (2016). Towards more efficient SPSD matrix approximation and CUR matrix decomposition. Journal of Machine Learning Research, 17, 1–49.MathSciNetMATH
63.
Zurück zum Zitat Williams, C., & Seeger, M. (2001). Using the Nystrom method to speedup kernel machines. In T. Leen, T. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems (Vol. 13, pp. 682–690). Cambridge, MA, USA: MIT Press. Williams, C., & Seeger, M. (2001). Using the Nystrom method to speedup kernel machines. In T. Leen, T. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems (Vol. 13, pp. 682–690). Cambridge, MA, USA: MIT Press.
64.
Zurück zum Zitat Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., et al. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37.CrossRef Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., et al. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37.CrossRef
65.
Zurück zum Zitat Xu, W., & Gong, Y. (2004). Document clustering by concept factorization. In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 202–209). Xu, W., & Gong, Y. (2004). Document clustering by concept factorization. In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 202–209).
66.
Zurück zum Zitat Yang, S., & Yi, Z. (2010). Convergence analysis of non-negative matrix factorization for BSS algorithm. Neural Processing Letters, 31, 45–64.CrossRef Yang, S., & Yi, Z. (2010). Convergence analysis of non-negative matrix factorization for BSS algorithm. Neural Processing Letters, 31, 45–64.CrossRef
67.
Zurück zum Zitat Yang, S., Yi, Z., Ye, M., & He, X. (2014). Convergence analysis of graph regularized non-negative matrix factorization. IEEE Transactions on Knowledge and Data Engineering, 26(9), 2151–2165.CrossRef Yang, S., Yi, Z., Ye, M., & He, X. (2014). Convergence analysis of graph regularized non-negative matrix factorization. IEEE Transactions on Knowledge and Data Engineering, 26(9), 2151–2165.CrossRef
68.
Zurück zum Zitat Yang, Z., & Laaksonen, J. (2007). Multiplicative updates for non-negative projections. Neurocomputing, 71, 363–373.CrossRef Yang, Z., & Laaksonen, J. (2007). Multiplicative updates for non-negative projections. Neurocomputing, 71, 363–373.CrossRef
69.
Zurück zum Zitat Yang, Z., & Oja, E. (2010). Linear and nonlinear projective nonnegative matrix factorization. IEEE Transactions on Neural Networks, 21(5), 734–749.CrossRef Yang, Z., & Oja, E. (2010). Linear and nonlinear projective nonnegative matrix factorization. IEEE Transactions on Neural Networks, 21(5), 734–749.CrossRef
70.
Zurück zum Zitat Yokota, T., Zdunek, R., Cichocki, A., & Yamashita, Y. (2015). Smooth nonnegative matrix and tensor factorizations for robust multi-way data analysis. Signal Processing, 113, 234–249.CrossRef Yokota, T., Zdunek, R., Cichocki, A., & Yamashita, Y. (2015). Smooth nonnegative matrix and tensor factorizations for robust multi-way data analysis. Signal Processing, 113, 234–249.CrossRef
71.
Zurück zum Zitat Zafeiriou, S., & Petrou, M. (2010). Nonlinear non-negative component analysis algorithms. IEEE Transactions on Image Processing, 19(4), 1050–1066.MathSciNetMATHCrossRef Zafeiriou, S., & Petrou, M. (2010). Nonlinear non-negative component analysis algorithms. IEEE Transactions on Image Processing, 19(4), 1050–1066.MathSciNetMATHCrossRef
72.
Zurück zum Zitat Zafeiriou, S., Tefas, A., Buciu, I., & Pitas, I. (2006). Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification. IEEE Transactions on Neural Networks, 17(3), 683–695.CrossRef Zafeiriou, S., Tefas, A., Buciu, I., & Pitas, I. (2006). Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification. IEEE Transactions on Neural Networks, 17(3), 683–695.CrossRef
73.
Zurück zum Zitat Zdunek, R., & Cichocki, A. (2007). Nonnegative matrix factorization with constrained second-order optimization. Signal Processing, 87, 1904–1916.MATHCrossRef Zdunek, R., & Cichocki, A. (2007). Nonnegative matrix factorization with constrained second-order optimization. Signal Processing, 87, 1904–1916.MATHCrossRef
74.
Zurück zum Zitat Zdunek, R., & Cichocki, A. (2008). Fast nonnegative matrix factorization algorithms using projected gradient approaches for large-scale problems. Computational Intelligence and Neuroscience, 2008, Article ID 939567. Zdunek, R., & Cichocki, A. (2008). Fast nonnegative matrix factorization algorithms using projected gradient approaches for large-scale problems. Computational Intelligence and Neuroscience, 2008, Article ID 939567.
75.
Zurück zum Zitat Zhang, J., Wei, L., Feng, X., Ma, Z., & Wang, Y. (2008). Pattern expression nonnegative matrix factorization: Algorithm and applications to blind source separation. Computational Intelligence and Neuroscience, 2008, Article ID 168769. Zhang, J., Wei, L., Feng, X., Ma, Z., & Wang, Y. (2008). Pattern expression nonnegative matrix factorization: Algorithm and applications to blind source separation. Computational Intelligence and Neuroscience, 2008, Article ID 168769.
76.
Zurück zum Zitat Zhang, X., Zong, L., Liu, X., & Luo, J. (2016). Constrained clustering with nonnegative matrix factorization. IEEE Transactions on Neural Networks and Learning Systems, 27(7), 1514–1526.MathSciNetCrossRef Zhang, X., Zong, L., Liu, X., & Luo, J. (2016). Constrained clustering with nonnegative matrix factorization. IEEE Transactions on Neural Networks and Learning Systems, 27(7), 1514–1526.MathSciNetCrossRef
77.
Zurück zum Zitat Zhang, Z., & Zhao, K. (2013). Low-rank matrix approximation with manifold regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7), 1717–1729.CrossRef Zhang, Z., & Zhao, K. (2013). Low-rank matrix approximation with manifold regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7), 1717–1729.CrossRef
78.
Zurück zum Zitat Zhao, R., & Tan, V. Y. F. (2017). Online nonnegative matrix factorization with outliers. IEEE Transactions on Signal Processing, 65(3), 555–570.MathSciNetMATHCrossRef Zhao, R., & Tan, V. Y. F. (2017). Online nonnegative matrix factorization with outliers. IEEE Transactions on Signal Processing, 65(3), 555–570.MathSciNetMATHCrossRef
79.
Zurück zum Zitat Zhou, G., Xie, S., Yang, Z., Yang, J.-M., & He, Z. (2011). Minimum-volume-constrained nonnegative matrix factorization: Enhanced ability of learning parts. IEEE Transactions on Neural Networks, 22(10), 1626–1637.CrossRef Zhou, G., Xie, S., Yang, Z., Yang, J.-M., & He, Z. (2011). Minimum-volume-constrained nonnegative matrix factorization: Enhanced ability of learning parts. IEEE Transactions on Neural Networks, 22(10), 1626–1637.CrossRef
Metadaten
Titel
Nonnegative Matrix Factorization
verfasst von
Ke-Lin Du
M. N. S. Swamy
Copyright-Jahr
2019
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-7452-3_14