Skip to main content
Erschienen in: The Journal of Supercomputing 8/2021

13.01.2021

Novel certificateless Chebyshev chaotic map-based key agreement protocol for advanced metering infrastructure

verfasst von: Dariush Abbasinezhad-Mood, Arezou Ostad-Sharif, Morteza Nikooghadam, Sayyed Majid Mazinani

Erschienen in: The Journal of Supercomputing | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The integration of information technologies into the current power grid has raised significant security concerns for the advanced metering infrastructure (AMI). Evidently, without employing proper security measures, illegal or malicious entities could launch miscellaneous attacks. Thus, scholars have presented several key agreement schemes, which can be used by different parties in the AMI guaranteeing their subsequent secure communications. However, after careful deliberation, we found that their efficiency could be still improved while keeping the desired security properties. Thus, in this paper, utilizing the Chebyshev chaotic maps, as one of the most efficient security methods, we first propose a novel certificateless anonymous authentication and key agreement scheme that both enhances the security and reduces the overhead on the computationally constrained measurement devices. To be more specific, we propose a novel signature scheme in the Chebyshev cryptosystem in order to make our protocol certificateless eliminating the key escrow issue and certificate management overhead. By the way, the proposed scheme is the first Chebyshev chaotic map-based key agreement protocol that is certificateless. Then, we validate the security of the proposed scheme using the random oracle model and ProVerif tool as two well-known and popular formal techniques. Our comprehensive functionality, communication cost, and execution time comparisons indicate the superiority of our scheme compared to the all related schemes in terms of both security and efficiency. For a key agreement, the execution time of the proposed scheme is just 539 microseconds, and its communication overhead is only 1088 bits, much better than the existing related ones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu H, Ning H, Zhang Y, Xiong Q, Yang LT (2014) Role-dependent privacy preservation for secure V2G networks in the smart grid. IEEE Trans. Inf. Forensics Secur. 9(2):208–220CrossRef Liu H, Ning H, Zhang Y, Xiong Q, Yang LT (2014) Role-dependent privacy preservation for secure V2G networks in the smart grid. IEEE Trans. Inf. Forensics Secur. 9(2):208–220CrossRef
2.
Zurück zum Zitat Lo C-H, Ansari N (2013) Decentralized controls and communications for autonomous distribution networks in smart grid. IEEE Tran. Smart Grid 4(1):66–77CrossRef Lo C-H, Ansari N (2013) Decentralized controls and communications for autonomous distribution networks in smart grid. IEEE Tran. Smart Grid 4(1):66–77CrossRef
3.
Zurück zum Zitat Ma R, Chen H-H, Huang Y-R, Meng W (2013) Smart grid communication: its challenges and opportunities. IEEE Trans. Smart Grid 4(1):36–46CrossRef Ma R, Chen H-H, Huang Y-R, Meng W (2013) Smart grid communication: its challenges and opportunities. IEEE Trans. Smart Grid 4(1):36–46CrossRef
4.
Zurück zum Zitat Saxena N, Grijalva S (2017) dynamic secrets and secret keys based scheme for securing last mile smart grid wireless communication. IEEE Trans. Ind. Inf. 13(3):1482–1491CrossRef Saxena N, Grijalva S (2017) dynamic secrets and secret keys based scheme for securing last mile smart grid wireless communication. IEEE Trans. Ind. Inf. 13(3):1482–1491CrossRef
5.
Zurück zum Zitat Abbasinezhad-Mood D, Nikooghadam M (2017) An ultra-lightweight and secure scheme for communications of smart meters and neighborhood gateways by Utilization of an ARM cortex-M microcontroller. IEEE Trans. Smart Grid 9(6):6194–6205 Abbasinezhad-Mood D, Nikooghadam M (2017) An ultra-lightweight and secure scheme for communications of smart meters and neighborhood gateways by Utilization of an ARM cortex-M microcontroller. IEEE Trans. Smart Grid 9(6):6194–6205
6.
Zurück zum Zitat Saxena N, Choi BJ, Lu R (2016) Authentication and authorization scheme for various user roles and devices in smart grid. IEEE Trans. Inf. Forensics Secur. 11(5):907–921CrossRef Saxena N, Choi BJ, Lu R (2016) Authentication and authorization scheme for various user roles and devices in smart grid. IEEE Trans. Inf. Forensics Secur. 11(5):907–921CrossRef
7.
Zurück zum Zitat Abbasinezhad-Mood D, Nikooghadam M (2018) An anonymous ECC-based self-certified key distribution scheme for the smart grid. IEEE Trans. Indust. Electron. 65(10):7996–8004CrossRef Abbasinezhad-Mood D, Nikooghadam M (2018) An anonymous ECC-based self-certified key distribution scheme for the smart grid. IEEE Trans. Indust. Electron. 65(10):7996–8004CrossRef
8.
Zurück zum Zitat Mohammadali A, Haghighi MS, Tadayon MH, Nodooshan AM (2016) A novel identity-based key establishment method for advanced metering infrastructure in smart grid. IEEE Trans. Smart Grid 9(4):2834–2842CrossRef Mohammadali A, Haghighi MS, Tadayon MH, Nodooshan AM (2016) A novel identity-based key establishment method for advanced metering infrastructure in smart grid. IEEE Trans. Smart Grid 9(4):2834–2842CrossRef
9.
Zurück zum Zitat Abbasinezhad-Mood D, Nikooghadam M (2018) Design and extensive hardware performance analysis of an efficient pairwise key generation scheme for smart grid. Int. J. Commun. Syst. 31(5):e3507CrossRef Abbasinezhad-Mood D, Nikooghadam M (2018) Design and extensive hardware performance analysis of an efficient pairwise key generation scheme for smart grid. Int. J. Commun. Syst. 31(5):e3507CrossRef
10.
Zurück zum Zitat Menezes, A., Oorschot, P., Vanstone, S.A. (2001) Handbook of Applied Cryptography Menezes, A., Oorschot, P., Vanstone, S.A. (2001) Handbook of Applied Cryptography
11.
Zurück zum Zitat Abbasinezhad-Mood D, Nikooghadam M (2018) Design and hardware implementation of a security-enhanced elliptic curve cryptography based lightweight authentication scheme for smart grid communications. Future Gen. Comput. Syst. 84:47–57CrossRef Abbasinezhad-Mood D, Nikooghadam M (2018) Design and hardware implementation of a security-enhanced elliptic curve cryptography based lightweight authentication scheme for smart grid communications. Future Gen. Comput. Syst. 84:47–57CrossRef
12.
Zurück zum Zitat Tsai J-L, Lo N-W (2016) Secure anonymous key distribution scheme for smart grid. IEEE Trans. Smart Grid 7(2):906–914 Tsai J-L, Lo N-W (2016) Secure anonymous key distribution scheme for smart grid. IEEE Trans. Smart Grid 7(2):906–914
13.
Zurück zum Zitat Odelu V, Das AK, Wazid M, Conti M (2016) Provably secure authenticated key agreement scheme for smart grid. IEEE Trans. Smart Grid 9(3):1900–1910 Odelu V, Das AK, Wazid M, Conti M (2016) Provably secure authenticated key agreement scheme for smart grid. IEEE Trans. Smart Grid 9(3):1900–1910
14.
Zurück zum Zitat He D, Wang H, Khan MK, Wang L (2016) Lightweight anonymous key distribution scheme for smart grid using elliptic curve cryptography. IET Commun. 10(14):1795–1802CrossRef He D, Wang H, Khan MK, Wang L (2016) Lightweight anonymous key distribution scheme for smart grid using elliptic curve cryptography. IET Commun. 10(14):1795–1802CrossRef
15.
Zurück zum Zitat Abbasinezhad-Mood D, Nikooghadam M (2018) Efficient anonymous password-authenticated key exchange protocol to read isolated smart meters by utilization of extended Chebyshev chaotic maps. IEEE Trans. Ind. Inf. 14(11):4815–4828 Abbasinezhad-Mood D, Nikooghadam M (2018) Efficient anonymous password-authenticated key exchange protocol to read isolated smart meters by utilization of extended Chebyshev chaotic maps. IEEE Trans. Ind. Inf. 14(11):4815–4828
16.
Zurück zum Zitat Kocarev L (2001) Chaos-based cryptography: a brief overview. IEEE Circ. Syst. Mag. 1(3):6–21CrossRef Kocarev L (2001) Chaos-based cryptography: a brief overview. IEEE Circ. Syst. Mag. 1(3):6–21CrossRef
17.
Zurück zum Zitat Fouda MM, Fadlullah ZM, Kato N, Lu R, Shen XS (2011) A lightweight message authentication scheme for smart grid communications. IEEE Trans. Smart Grid 2(4):675–685CrossRef Fouda MM, Fadlullah ZM, Kato N, Lu R, Shen XS (2011) A lightweight message authentication scheme for smart grid communications. IEEE Trans. Smart Grid 2(4):675–685CrossRef
18.
Zurück zum Zitat Wu D, Zhou C (2011) Fault-tolerant and scalable key management for smart grid. IEEE Trans. Smart Grid 2(2):375–381CrossRef Wu D, Zhou C (2011) Fault-tolerant and scalable key management for smart grid. IEEE Trans. Smart Grid 2(2):375–381CrossRef
20.
Zurück zum Zitat Nicanfar H, Leung VC (2013) Multilayer consensus ECC-based password authenticated key-exchange (MCEPAK) protocol for smart grid system. IEEE Trans. Smart Grid 4(1):253–264CrossRef Nicanfar H, Leung VC (2013) Multilayer consensus ECC-based password authenticated key-exchange (MCEPAK) protocol for smart grid system. IEEE Trans. Smart Grid 4(1):253–264CrossRef
21.
Zurück zum Zitat Uludag S, Lui K-S, Ren W, Nahrstedt K (2016) Secure and scalable data collection with time minimization in the smart grid. IEEE Trans. Smart Grid 7(1):43–54CrossRef Uludag S, Lui K-S, Ren W, Nahrstedt K (2016) Secure and scalable data collection with time minimization in the smart grid. IEEE Trans. Smart Grid 7(1):43–54CrossRef
22.
Zurück zum Zitat Mahmood K, Chaudhry SA, Naqvi H, Shon T, Ahmad HF (2016) A lightweight message authentication scheme for smart grid communications in power sector. Comput. Electric. Eng. 52:114–124CrossRef Mahmood K, Chaudhry SA, Naqvi H, Shon T, Ahmad HF (2016) A lightweight message authentication scheme for smart grid communications in power sector. Comput. Electric. Eng. 52:114–124CrossRef
23.
Zurück zum Zitat Li X, Wu F, Kumari S, Xu L, Sangaiah AK, Choo K-KR (2019) A provably secure and anonymous message authentication scheme for smart grids. J. Parall. Distribut. Comput. 132:242–249CrossRef Li X, Wu F, Kumari S, Xu L, Sangaiah AK, Choo K-KR (2019) A provably secure and anonymous message authentication scheme for smart grids. J. Parall. Distribut. Comput. 132:242–249CrossRef
24.
Zurück zum Zitat Chen Y, Martínez J-F, Castillejo P, López L (2017) An anonymous authentication and key establish scheme for smart grid: FAuth. Energies 10(9):1354CrossRef Chen Y, Martínez J-F, Castillejo P, López L (2017) An anonymous authentication and key establish scheme for smart grid: FAuth. Energies 10(9):1354CrossRef
25.
Zurück zum Zitat Mahmood K, Li X, Chaudhry SA, Naqvi H, Kumari S, Sangaiah AK, Rodrigues JJ (2018) Pairing based anonymous and secure key agreement protocol for smart grid edge computing infrastructure. Future Gener. Comput. Syst. 88:491–500CrossRef Mahmood K, Li X, Chaudhry SA, Naqvi H, Kumari S, Sangaiah AK, Rodrigues JJ (2018) Pairing based anonymous and secure key agreement protocol for smart grid edge computing infrastructure. Future Gener. Comput. Syst. 88:491–500CrossRef
26.
Zurück zum Zitat Mahmood K, Chaudhry SA, Naqvi H, Kumari S, Li X, Sangaiah AK (2018) An elliptic curve cryptography based lightweight authentication scheme for smart grid communication. Future Gener. Comput. Syst. 81:557–565CrossRef Mahmood K, Chaudhry SA, Naqvi H, Kumari S, Li X, Sangaiah AK (2018) An elliptic curve cryptography based lightweight authentication scheme for smart grid communication. Future Gener. Comput. Syst. 81:557–565CrossRef
27.
Zurück zum Zitat Abbasinezhad-Mood D, Nikooghadam M (2018) Design of an enhanced message authentication scheme for smart grid and its performance analysis on an ARM cortex-M3 microcontroller. J. Inf. Secur. Appl. 40:9–19 Abbasinezhad-Mood D, Nikooghadam M (2018) Design of an enhanced message authentication scheme for smart grid and its performance analysis on an ARM cortex-M3 microcontroller. J. Inf. Secur. Appl. 40:9–19
28.
Zurück zum Zitat Abbasinezhad-Mood D, Ostad-Sharif A, Nikooghadam M (2019) Novel anonymous key establishment protocol for isolated smart meters. IEEE Trans. Ind. Electron. 67(4):2844–2851CrossRef Abbasinezhad-Mood D, Ostad-Sharif A, Nikooghadam M (2019) Novel anonymous key establishment protocol for isolated smart meters. IEEE Trans. Ind. Electron. 67(4):2844–2851CrossRef
29.
Zurück zum Zitat Liang X.-C, Wu T.-Y, Lee Y.-Q, Chen C.-M, Yeh J.-H (2020) Cryptanalysis of a pairing-based anonymous key agreement scheme for smart grid. In Advances in Intelligent Information Hiding and Multimedia Signal Processing. Springer, pp. 125–131 Liang X.-C, Wu T.-Y, Lee Y.-Q, Chen C.-M, Yeh J.-H (2020) Cryptanalysis of a pairing-based anonymous key agreement scheme for smart grid. In Advances in Intelligent Information Hiding and Multimedia Signal Processing.   Springer, pp. 125–131
30.
Zurück zum Zitat Chen, Y., Martínez, J.-F., Castillejo, P., López, L. (2019) A bilinear map pairing based authentication scheme for smart grid communications: Pauth. IEEE Access, vol. 7, pp. 22 633–22 643 Chen, Y., Martínez, J.-F., Castillejo, P., López, L. (2019) A bilinear map pairing based authentication scheme for smart grid communications: Pauth. IEEE Access, vol. 7, pp. 22 633–22 643
31.
Zurück zum Zitat Braeken A, Kumar P, Martin A (2018) Efficient and provably secure key agreement for modern smart metering communications. Energies 11(10):2662CrossRef Braeken A, Kumar P, Martin A (2018) Efficient and provably secure key agreement for modern smart metering communications. Energies 11(10):2662CrossRef
32.
Zurück zum Zitat Zhang H, Wang J, Ding Y (2019) Blockchain-based decentralized and secure keyless signature scheme for smart grid. Energy 180:955–967CrossRef Zhang H, Wang J, Ding Y (2019) Blockchain-based decentralized and secure keyless signature scheme for smart grid. Energy 180:955–967CrossRef
33.
Zurück zum Zitat Abbasinezhad-Mood D, Ostad-Sharif A, Nikooghadam M, Mazinani SM (2019) A secure and efficient key establishment scheme for communications of smart meters and service providers in smart grid. IEEE Trans. Ind. Inf. 16(3):1495–1502CrossRef Abbasinezhad-Mood D, Ostad-Sharif A, Nikooghadam M, Mazinani SM (2019) A secure and efficient key establishment scheme for communications of smart meters and service providers in smart grid. IEEE Trans. Ind. Inf. 16(3):1495–1502CrossRef
34.
Zurück zum Zitat Chaudhry SA, Farash MS, Naqvi H, Islam SH, Shon T (2017) A robust and efficient privacy aware handover authentication scheme for wireless networks. Wireless Pers. Commun. 93(2):311–335CrossRef Chaudhry SA, Farash MS, Naqvi H, Islam SH, Shon T (2017) A robust and efficient privacy aware handover authentication scheme for wireless networks. Wireless Pers. Commun. 93(2):311–335CrossRef
35.
Zurück zum Zitat Abbasinezhad-Mood D, Ostad-Sharif A, Mazinani SM, Nikooghadam M (2020) Provably-secure escrow-less Chebyshev chaotic map-based key agreement protocol for vehicle to grid connections with privacy protection. IEEE Trans. Ind. Inf. 16(12):7287–7294CrossRef Abbasinezhad-Mood D, Ostad-Sharif A, Mazinani SM, Nikooghadam M (2020) Provably-secure escrow-less Chebyshev chaotic map-based key agreement protocol for vehicle to grid connections with privacy protection. IEEE Trans. Ind. Inf. 16(12):7287–7294CrossRef
37.
Zurück zum Zitat Bao H, Chen L (2016) A lightweight privacy-preserving scheme with data integrity for smart grid communications. Concurren. Comput. Pract. Exper. 28(4):1094–1110CrossRef Bao H, Chen L (2016) A lightweight privacy-preserving scheme with data integrity for smart grid communications. Concurren. Comput. Pract. Exper. 28(4):1094–1110CrossRef
38.
Zurück zum Zitat Sharif A, Mollaeefar M, Nazari M (2017) A novel method for digital image steganography based on a new three-dimensional chaotic map. Multimed. Tools Appl. 76(6):7849–7867CrossRef Sharif A, Mollaeefar M, Nazari M (2017) A novel method for digital image steganography based on a new three-dimensional chaotic map. Multimed. Tools Appl. 76(6):7849–7867CrossRef
39.
Zurück zum Zitat Zhang L (2008) Cryptanalysis of the public key encryption based on multiple chaotic systems. Chaos Solit. Fract. 37(3):669–674MathSciNetMATHCrossRef Zhang L (2008) Cryptanalysis of the public key encryption based on multiple chaotic systems. Chaos Solit. Fract. 37(3):669–674MathSciNetMATHCrossRef
40.
Zurück zum Zitat Lee T-F (2015) Provably secure anonymous single-sign-on authentication mechanisms using extended chebyshev chaotic maps for distributed computer networks. IEEE Syst. J. 12(2):1499–1505CrossRef Lee T-F (2015) Provably secure anonymous single-sign-on authentication mechanisms using extended chebyshev chaotic maps for distributed computer networks. IEEE Syst. J. 12(2):1499–1505CrossRef
41.
Zurück zum Zitat Canetti, R., Krawczyk, H. (2001) Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In International Conference on the Theory and Applications of Cryptographic Techniques. Springer, pp. 453–474 Canetti, R., Krawczyk, H. (2001) Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In International Conference on the Theory and Applications of Cryptographic Techniques.   Springer, pp. 453–474
43.
Zurück zum Zitat Xu J, Zhu W-T, Feng D-G (2009) An improved smart card based password authentication scheme with provable security. Comput. Stand. Interf. 31(4):723–728CrossRef Xu J, Zhu W-T, Feng D-G (2009) An improved smart card based password authentication scheme with provable security. Comput. Stand. Interf. 31(4):723–728CrossRef
44.
Zurück zum Zitat Chaudhry SA, Naqvi H, Sher M, Farash MS, Hassan MU (2017) An improved and provably secure privacy preserving authentication protocol for SIP. Peer-to-Peer Netw. Appl. 10(1):1–15CrossRef Chaudhry SA, Naqvi H, Sher M, Farash MS, Hassan MU (2017) An improved and provably secure privacy preserving authentication protocol for SIP. Peer-to-Peer Netw. Appl. 10(1):1–15CrossRef
49.
Zurück zum Zitat Abbasinezhad-Mood D, Nikooghadam M (2018) Efficient design of a novel ECC-based public key scheme for medical data protection by utilization of NanoPi fire. IEEE Trans. Reliab. 67(3):1328–1339CrossRef Abbasinezhad-Mood D, Nikooghadam M (2018) Efficient design of a novel ECC-based public key scheme for medical data protection by utilization of NanoPi fire. IEEE Trans. Reliab. 67(3):1328–1339CrossRef
50.
Zurück zum Zitat Wazid M, Das AK, Kumar N, Rodrigues J (2017) Secure three-factor user authentication scheme for renewable energy based smart grid environment. IEEE Trans. Ind. Inf. 13(6):3144–3153CrossRef Wazid M, Das AK, Kumar N, Rodrigues J (2017) Secure three-factor user authentication scheme for renewable energy based smart grid environment. IEEE Trans. Ind. Inf. 13(6):3144–3153CrossRef
Metadaten
Titel
Novel certificateless Chebyshev chaotic map-based key agreement protocol for advanced metering infrastructure
verfasst von
Dariush Abbasinezhad-Mood
Arezou Ostad-Sharif
Morteza Nikooghadam
Sayyed Majid Mazinani
Publikationsdatum
13.01.2021
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 8/2021
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-020-03552-z

Weitere Artikel der Ausgabe 8/2021

The Journal of Supercomputing 8/2021 Zur Ausgabe