Skip to main content
Erschienen in: Cellulose 9/2020

14.04.2020 | Original Research

Novel chemically cross-linked chitosan-cellulose based ionogel with self-healability, high ionic conductivity, and high thermo-mechanical stability

verfasst von: Zihao Wang, Jiahang Liu, Jianxin Zhang, Shuai Hao, Xiaoli Duan, Hongzan Song, Jun Zhang

Erschienen in: Cellulose | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Developing flexible electrochemical devices with high-performance electrolytes by using natural renewable polymer is of great significance for meeting green and sustainable energy requirements. Here, a new type of chemically cross-linked ionogel based on natural chitosan and cellulose with good self-healability has been designed by a two-step method in ionic liquid. The rheological and dynamic mechanical analysis tests revealed that the as-prepared ionogel exhibited excellent thermo-mechanical stability even when the temperature was as high as 150 °C. Furthermore, the obtained ionogels showed good frost resistance, and still could maintain excellent flexibility even when the temperature was as low as − 20 °C. More importantly, the ionogel showed superior room temperature ionic conductivity (up to 2.1 mS/cm) and retained high electrical performance over a temperature range from − 50 to 120 °C. Additionally, the ionogel was used as electrolyte for preparing flexible supercapacitors and showed good performance under high temperature and harsh mechanical conditions. Such an ionogel, based on natural polymers with robust mechanical properties, high ionic conductivity, self-healability, and wide working temperature range, could be very useful for next-generation sustainable electrochemical devices.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629PubMed Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629PubMed
Zurück zum Zitat Bhattacharya S, Phatake RS, Barnea SN, Zerby N, Zhu JJ, Shikler R, Lemcoff NG, Jelinek R (2019) Fluorescent self-healing carbon dot/polymer gels. ACS Nano 13:1433–1442PubMed Bhattacharya S, Phatake RS, Barnea SN, Zerby N, Zhu JJ, Shikler R, Lemcoff NG, Jelinek R (2019) Fluorescent self-healing carbon dot/polymer gels. ACS Nano 13:1433–1442PubMed
Zurück zum Zitat Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21 Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21
Zurück zum Zitat Chen W, Yu H, Lee S-Y, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872PubMed Chen W, Yu H, Lee S-Y, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872PubMed
Zurück zum Zitat Cheng X, Pan J, Zhao Y, Liao M, Peng H (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8:1702184 Cheng X, Pan J, Zhao Y, Liao M, Peng H (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8:1702184
Zurück zum Zitat Dang C, Wang M, Yu J, Chen Y, Zhou S, Feng X, Liu D, Qi H (2019) Transparent, highly stretchable, rehealable, sensing, and fully recyclable ionic conductors fabricated by one-step polymerization based on a small biological molecule. Adv Funct Mater 29:1902467 Dang C, Wang M, Yu J, Chen Y, Zhou S, Feng X, Liu D, Qi H (2019) Transparent, highly stretchable, rehealable, sensing, and fully recyclable ionic conductors fabricated by one-step polymerization based on a small biological molecule. Adv Funct Mater 29:1902467
Zurück zum Zitat D'Angelo AJ, Panzer MJ (2019) Design of stretchable and self-healing gel electrolytes via fully zwitterionic polymer networks in solvate ionic liquids for Li-based batteries. Chem Mater 31:2913–2922 D'Angelo AJ, Panzer MJ (2019) Design of stretchable and self-healing gel electrolytes via fully zwitterionic polymer networks in solvate ionic liquids for Li-based batteries. Chem Mater 31:2913–2922
Zurück zum Zitat Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan-A versatile semi-synthetic polymer in biomedical applications. Progr Polym Sci 36:981–1014 Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan-A versatile semi-synthetic polymer in biomedical applications. Progr Polym Sci 36:981–1014
Zurück zum Zitat Ding Y, Zhang J, Chang L, Zhang X, Liu H, Jiang L (2017) Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv Mater 29:1704253 Ding Y, Zhang J, Chang L, Zhang X, Liu H, Jiang L (2017) Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv Mater 29:1704253
Zurück zum Zitat Dubal DP, Chodankar N, Kim D-H, Gomez-Romero P (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129PubMed Dubal DP, Chodankar N, Kim D-H, Gomez-Romero P (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129PubMed
Zurück zum Zitat Duran VL, Erlandsson J, Wagberg L, Larsson PA (2018) Novel, cellulose-based, lightweight, wet-resilient materials with tunable porosity, density, and strength. ACS Sustain Chem Eng 6:9951–9957 Duran VL, Erlandsson J, Wagberg L, Larsson PA (2018) Novel, cellulose-based, lightweight, wet-resilient materials with tunable porosity, density, and strength. ACS Sustain Chem Eng 6:9951–9957
Zurück zum Zitat Fu X, Zhong W-H (2019) Biomaterials for high-energy lithium-based batteries: strategies, challenges, and perspectives. Adv Energy Mater 9:1901774 Fu X, Zhong W-H (2019) Biomaterials for high-energy lithium-based batteries: strategies, challenges, and perspectives. Adv Energy Mater 9:1901774
Zurück zum Zitat Guo S, Zhao K, Feng Z, Hou Y, Li H, Zhao J, Tian Y, Song H (2018) High performance liquid crystalline bionanocomposite ionogels prepared by in situ crosslinking of cellulose/halloysite nanotubes/ionic liquid dispersions and its application in supercapacitors. Appl Surf Sci 455:599–607 Guo S, Zhao K, Feng Z, Hou Y, Li H, Zhao J, Tian Y, Song H (2018) High performance liquid crystalline bionanocomposite ionogels prepared by in situ crosslinking of cellulose/halloysite nanotubes/ionic liquid dispersions and its application in supercapacitors. Appl Surf Sci 455:599–607
Zurück zum Zitat Guyomard-Lack A, Buchtova N, Humbert B, Le Bideau J (2015) Ion segregation in an ionic liquid confined within chitosan based chemical ionogels. Phys Chem Chem Phys 17:23947–23951PubMed Guyomard-Lack A, Buchtova N, Humbert B, Le Bideau J (2015) Ion segregation in an ionic liquid confined within chitosan based chemical ionogels. Phys Chem Chem Phys 17:23947–23951PubMed
Zurück zum Zitat Hou R, Gund GS, Qi K, Nakhanivej P, Liu H, Li F, Xia BY, Park HS (2019) Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Mater 19:212–241 Hou R, Gund GS, Qi K, Nakhanivej P, Liu H, Li F, Xia BY, Park HS (2019) Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Mater 19:212–241
Zurück zum Zitat Jung YH, Chang T-H, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park D-W, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170PubMed Jung YH, Chang T-H, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park D-W, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170PubMed
Zurück zum Zitat Kaszynska J, Rachocki A, Bielejewski M, Tritt-Goc J (2017) Influence of cellulose gel matrix on BMIMCl ionic liquid dynamics and conductivity. Cellulose 24:1641–1655 Kaszynska J, Rachocki A, Bielejewski M, Tritt-Goc J (2017) Influence of cellulose gel matrix on BMIMCl ionic liquid dynamics and conductivity. Cellulose 24:1641–1655
Zurück zum Zitat Kim SW, Kim DY, Roh HH, Kim HS, Lee JW, Lee KY (2019) Three-dimensional bioprinting of cell-laden constructs using polysaccharide-based self-healing hydrogels. Biomacromol 20:1860–1866 Kim SW, Kim DY, Roh HH, Kim HS, Lee JW, Lee KY (2019) Three-dimensional bioprinting of cell-laden constructs using polysaccharide-based self-healing hydrogels. Biomacromol 20:1860–1866
Zurück zum Zitat Lee G, Kang S-K, Won SM, Gutruf P, Jeong YR, Koo J, Lee S-S, Rogers JA, Ha JS (2017) Fully biodegradable microsupercapacitor for power storage in transient electronics. Adv Energy Mater 7:1700157 Lee G, Kang S-K, Won SM, Gutruf P, Jeong YR, Koo J, Lee S-S, Rogers JA, Ha JS (2017) Fully biodegradable microsupercapacitor for power storage in transient electronics. Adv Energy Mater 7:1700157
Zurück zum Zitat Li H, Feng Z, Zhao K, Wang Z, Liu J, Liu J, Song H (2019) Chemically crosslinked liquid crystalline poly(ionic liquid)s/halloysite nanotubes nanocomposite ionogels with superior ionic conductivity, high anisotropic conductivity and a high modulus. Nanoscale 11:3689–3700PubMed Li H, Feng Z, Zhao K, Wang Z, Liu J, Liu J, Song H (2019) Chemically crosslinked liquid crystalline poly(ionic liquid)s/halloysite nanotubes nanocomposite ionogels with superior ionic conductivity, high anisotropic conductivity and a high modulus. Nanoscale 11:3689–3700PubMed
Zurück zum Zitat Liew C-W, Ramesh S (2015) Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes. Carbohydr Polym 124:222–228PubMed Liew C-W, Ramesh S (2015) Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes. Carbohydr Polym 124:222–228PubMed
Zurück zum Zitat Liu H, Yu H (2019) Ionic liquids for electrochemical energy storage devices applications. J Mater Sci Technol 35:674–686 Liu H, Yu H (2019) Ionic liquids for electrochemical energy storage devices applications. J Mater Sci Technol 35:674–686
Zurück zum Zitat Liu X, Wen Z, Wu D, Wang H, Yang J, Wang Q (2014) Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. J Mater Chem A 2:11569–11573 Liu X, Wen Z, Wu D, Wang H, Yang J, Wang Q (2014) Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. J Mater Chem A 2:11569–11573
Zurück zum Zitat Luo Z, Wang A, Wang C, Qin W, Zhao N, Song H, Gao J (2014) Liquid crystalline phase behavior and fiber spinning of cellulose/ionic liquid/halloysite nanotubes dispersions. J Mater Chem A 2:7327–7336 Luo Z, Wang A, Wang C, Qin W, Zhao N, Song H, Gao J (2014) Liquid crystalline phase behavior and fiber spinning of cellulose/ionic liquid/halloysite nanotubes dispersions. J Mater Chem A 2:7327–7336
Zurück zum Zitat Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92:955–975PubMed Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92:955–975PubMed
Zurück zum Zitat Mar Villar-Chavero M, Dominguez J, Virginia Alonso M, Oliet M, Rodriguez F (2019) Tuning the rheological properties of cellulosic ionogels reinforced with chitosan: the role of the deacetylation degree. Carbohyd Polym 207:775–781 Mar Villar-Chavero M, Dominguez J, Virginia Alonso M, Oliet M, Rodriguez F (2019) Tuning the rheological properties of cellulosic ionogels reinforced with chitosan: the role of the deacetylation degree. Carbohyd Polym 207:775–781
Zurück zum Zitat Nair JR, Colo F, Kazzazi A, Moreno M, Bresser D, Lin R, Bella F, Meligrana G, Fantini S, Simonetti E, Appetecchi GB, Passerini S, Gerbaldi C (2019) Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. J Power Sources 412:398–407 Nair JR, Colo F, Kazzazi A, Moreno M, Bresser D, Lin R, Bella F, Meligrana G, Fantini S, Simonetti E, Appetecchi GB, Passerini S, Gerbaldi C (2019) Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. J Power Sources 412:398–407
Zurück zum Zitat Pandey PK, Rawat K, Aswal VK, Kohlbrechere J, Bohidar HB (2017) DNA ionogel: structure and self-assembly. Phys Chem Chem Phys 19:804–812 Pandey PK, Rawat K, Aswal VK, Kohlbrechere J, Bohidar HB (2017) DNA ionogel: structure and self-assembly. Phys Chem Chem Phys 19:804–812
Zurück zum Zitat Park M-J, Lee J-S (2019) Foldable and biodegradable energy-storage devices on copy papers. Adv Electron Mater 5:1800411 Park M-J, Lee J-S (2019) Foldable and biodegradable energy-storage devices on copy papers. Adv Electron Mater 5:1800411
Zurück zum Zitat Peng H, Ning X, Wang S, Ju A (2018) The self-assembly and formation mechanism of a novel cellulose gel with chiral nematic structure. Cellulose 25:5499–5510 Peng H, Ning X, Wang S, Ju A (2018) The self-assembly and formation mechanism of a novel cellulose gel with chiral nematic structure. Cellulose 25:5499–5510
Zurück zum Zitat Pohako-Esko K, Bahlmann M, Schulz PS, Wasserscheid P (2016) Chitosan containing supported ionic liquid phase materials for CO2 absorption. Ind Eng Chem Res 55:7052–7059 Pohako-Esko K, Bahlmann M, Schulz PS, Wasserscheid P (2016) Chitosan containing supported ionic liquid phase materials for CO2 absorption. Ind Eng Chem Res 55:7052–7059
Zurück zum Zitat Prasad K, Mondal D, Sharma M, Freire M, Mukesh C, Bhatt J (2018) Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohyd Polym 180:328–336 Prasad K, Mondal D, Sharma M, Freire M, Mukesh C, Bhatt J (2018) Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohyd Polym 180:328–336
Zurück zum Zitat Qu R, Sun C, Ma F, Zhang Y, Ji C, Xu Q, Wang C, Chen H (2009) Removal and recovery of Hg(II) from aqueous solution using chitosan-coated cotton fibers. J Hazard Mater 167:717–727PubMed Qu R, Sun C, Ma F, Zhang Y, Ji C, Xu Q, Wang C, Chen H (2009) Removal and recovery of Hg(II) from aqueous solution using chitosan-coated cotton fibers. J Hazard Mater 167:717–727PubMed
Zurück zum Zitat Yao Y, Xia X, Mukuze KS, Zhang Y, Wang H (2014) Study on the temperature-induced sol-gel transition of cellulose/silk fibroin blends in 1-butyl-3-methylimidazolium chloride via rheological behavior. Cellulose 21:3737–3743 Yao Y, Xia X, Mukuze KS, Zhang Y, Wang H (2014) Study on the temperature-induced sol-gel transition of cellulose/silk fibroin blends in 1-butyl-3-methylimidazolium chloride via rheological behavior. Cellulose 21:3737–3743
Zurück zum Zitat Singh R, Polu AR, Bhattacharya B, Rhee H-W, Varlikli C, Singh PK (2016) Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renew Sustain Energy Rev 65:1098–1117 Singh R, Polu AR, Bhattacharya B, Rhee H-W, Varlikli C, Singh PK (2016) Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renew Sustain Energy Rev 65:1098–1117
Zurück zum Zitat Song H, Zheng L (2013) Nanocomposite films based on cellulose reinforced with nano-SiO2: microstructure, hydrophilicity, thermal stability, and mechanical properties. Cellulose 20:1737–1746 Song H, Zheng L (2013) Nanocomposite films based on cellulose reinforced with nano-SiO2: microstructure, hydrophilicity, thermal stability, and mechanical properties. Cellulose 20:1737–1746
Zurück zum Zitat Suginta W, Khunkaewla P, Schulte A (2013) Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev 113:5458–5479PubMed Suginta W, Khunkaewla P, Schulte A (2013) Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev 113:5458–5479PubMed
Zurück zum Zitat Thiemann S, Sachnov SJ, Pettersson F, Bollstrom R, Osterbacka R, Wasserscheid P, Zaumseil J (2014) Cellulose-based ionogels for paper electronics. Adv Funct Mater 24:625–634 Thiemann S, Sachnov SJ, Pettersson F, Bollstrom R, Osterbacka R, Wasserscheid P, Zaumseil J (2014) Cellulose-based ionogels for paper electronics. Adv Funct Mater 24:625–634
Zurück zum Zitat Tripathi BP, Shahi VK (2011) Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36:945–979 Tripathi BP, Shahi VK (2011) Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36:945–979
Zurück zum Zitat Trivedi TJ, Bhattacharjya D, Yu J-S, Kumar A (2015) Functionalized agarose self-healing ionogels suitable for supercapacitors. Chemsuschem 8:3294–3303PubMed Trivedi TJ, Bhattacharjya D, Yu J-S, Kumar A (2015) Functionalized agarose self-healing ionogels suitable for supercapacitors. Chemsuschem 8:3294–3303PubMed
Zurück zum Zitat Verger L, Corre S, Poirot R, Quintard G, Fleury E, Charlot A (2014) Dual guar/ionic liquid gels and biohybrid material thereof: rheological investigation. Carbohydr Polym 102:932–940PubMed Verger L, Corre S, Poirot R, Quintard G, Fleury E, Charlot A (2014) Dual guar/ionic liquid gels and biohybrid material thereof: rheological investigation. Carbohydr Polym 102:932–940PubMed
Zurück zum Zitat Wang A, Li S, Chen H, Hu Y, Peng X (2019) Synthesis and characterization of a novel microcrystalline cellulose-based polymeric bio-sorbent and its adsorption performance for Zn(II). Cellulose 26:6849–6859 Wang A, Li S, Chen H, Hu Y, Peng X (2019) Synthesis and characterization of a novel microcrystalline cellulose-based polymeric bio-sorbent and its adsorption performance for Zn(II). Cellulose 26:6849–6859
Zurück zum Zitat Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537PubMed Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537PubMed
Zurück zum Zitat Wang L, Chen D, Jiang K, Shen G (2017) New insights and perspectives into biological materials for flexible electronics. Chem Soc Rev 46:6764–6815PubMed Wang L, Chen D, Jiang K, Shen G (2017) New insights and perspectives into biological materials for flexible electronics. Chem Soc Rev 46:6764–6815PubMed
Zurück zum Zitat Xia Y, Liang YF, Xie D, Wang XL, Zhang SZ, Xia XH, Gu CD, Tu JP (2019) A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chem Eng J 358:1047–1053 Xia Y, Liang YF, Xie D, Wang XL, Zhang SZ, Xia XH, Gu CD, Tu JP (2019) A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chem Eng J 358:1047–1053
Zurück zum Zitat Xiao G, Wang Y, Zhang H, Chen L, Fu S (2019) Facile strategy to construct a self-healing and biocompatible cellulose nanocomposite hydrogel via reversible acylhydrazone. Carbohydr Polym 218:68–77PubMed Xiao G, Wang Y, Zhang H, Chen L, Fu S (2019) Facile strategy to construct a self-healing and biocompatible cellulose nanocomposite hydrogel via reversible acylhydrazone. Carbohydr Polym 218:68–77PubMed
Zurück zum Zitat Yang Q, Zhang Z, Sun X-G, Hu Y-S, Xing H, Dai S (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064PubMed Yang Q, Zhang Z, Sun X-G, Hu Y-S, Xing H, Dai S (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064PubMed
Zurück zum Zitat Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025 Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025
Zurück zum Zitat Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2010) Solubility of carbohydrates in ionic liquids. Energ Fuel 24:737–745 Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2010) Solubility of carbohydrates in ionic liquids. Energ Fuel 24:737–745
Zurück zum Zitat Zhao X, Guo S, Li H, Liu J, Su C, Song H (2017) One-pot synthesis of self-healable and recyclable ionogels based on polyamidoamine (PAMAM) dendrimers via Schiff base reaction. RSC Adv 7:38765–38772 Zhao X, Guo S, Li H, Liu J, Su C, Song H (2017) One-pot synthesis of self-healable and recyclable ionogels based on polyamidoamine (PAMAM) dendrimers via Schiff base reaction. RSC Adv 7:38765–38772
Zurück zum Zitat Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374PubMed Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374PubMed
Metadaten
Titel
Novel chemically cross-linked chitosan-cellulose based ionogel with self-healability, high ionic conductivity, and high thermo-mechanical stability
verfasst von
Zihao Wang
Jiahang Liu
Jianxin Zhang
Shuai Hao
Xiaoli Duan
Hongzan Song
Jun Zhang
Publikationsdatum
14.04.2020
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 9/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03144-3

Weitere Artikel der Ausgabe 9/2020

Cellulose 9/2020 Zur Ausgabe