Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

10.09.2019 | Extreme Learning Machine and Deep Learning Networks

Novel direct remaining useful life estimation of aero-engines with randomly assigned hidden nodes

Zeitschrift:
Neural Computing and Applications
Autoren:
Jian-Ming Bai, Guang-She Zhao, Hai-Jun Rong
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

This paper aims to improve data-driven prognostics by presenting a novel approach of directly estimating the remaining useful life (RUL) of aero-engines without requiring setting any failure threshold information or estimating degradation states. Specifically, based on the sensory data, RUL estimations are directly obtained through the universal function approximation capability of the extreme learning machine (ELM) algorithm. To achieve this, the features related with the RUL are first extracted from the sensory data as the inputs of the ELM model. Besides, to optimize the number of observed sensors, three evaluation metrics of correlation, monotonicity and robustness are defined and combined to automatically select the most relevant sensor values for more effective and efficient remaining useful life predictions. The validity and superiority of the proposed approach is evaluated by the widely used turbofan engine datasets from NASA Ames prognostics data repository. The proposed approach shows improved RUL estimation applicability at any time instant of the degradation process without determining the failure thresholds. This also simplifies the RUL estimation procedure. Moreover, the random properties of hidden nodes in the ELM learning mechanisms ensures the simplification and efficiency for real-time implementation. Therefore, the proposed approach suits to real-world applications in which prognostics estimations are required to be fast.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise