Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2018 | OriginalPaper | Buchkapitel

Novel Group Variable Selection for Salient Skull Region Selection and Sex Determination

verfasst von : Olasimbo Ayodeji Arigbabu, Iman Yi Liao, Nurliza Abdullah, Mohamad Helmee Mohamad Noor

Erschienen in: Advances in Brain Inspired Cognitive Systems

Verlag: Springer International Publishing

share
TEILEN

Abstract

Sex determination in forensic analysis involves individual examination of different sites of the skull and combination of these sites to understand their impact on the estimation results. Conventionally, forensic experts perform a stepwise combination of several skull region assessment parameters to determine the most important regions with regard to the sex estimation results. This paper introduces a novel group variable selection algorithm: Graph Laplacian Based Group Lasso with split augmented Lagrangian shrinkage algorithm (SALSA) to automatically learn from data by structuring the data into a set of disjointed groups and imposing a number of group sparsity to discover the salient groups which influence the sex determination results. In order to attain this, the skull is partitioned into smaller regions (local regions) using fuzzy c-means (FCM), which are further arranged into clusters as structured groups. Then, we implement the SALSA based group lasso algorithm to impose sparsity on the groups. Our experiments are conducted on 100 skull samples obtained from hospital kuala lumpur (HKL) and the best estimation result obtained is 84.5%.
Literatur
1.
Zurück zum Zitat Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 20(3), 681–695 (2011) MathSciNetCrossRef Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 20(3), 681–695 (2011) MathSciNetCrossRef
2.
Zurück zum Zitat Arigbabu, O.A., Liao, I.Y., Abdullah, N., Noor, M.H.M.: Can computer vision techniques be applied to automated forensic examinations? A study on sex identification from human skulls using head CT scans. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10114, pp. 342–359. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-54190-7_​21 CrossRef Arigbabu, O.A., Liao, I.Y., Abdullah, N., Noor, M.H.M.: Can computer vision techniques be applied to automated forensic examinations? A study on sex identification from human skulls using head CT scans. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10114, pp. 342–359. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-54190-7_​21 CrossRef
3.
Zurück zum Zitat Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers Foundations and Trends \(^{\textregistered }\). Mach. Learn. 3(1), 1–122 (2011) MATH Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers Foundations and Trends \(^{\textregistered }\). Mach. Learn. 3(1), 1–122 (2011) MATH
4.
Zurück zum Zitat Buikstra, J.E., Ubelaker., D. H.: Standards for data collection from human skeletal remains. In: Proceedings of a Seminar at the Field Museum of Natural History, Arkansas Archaeology Research Series, vol. 44 (1994) Buikstra, J.E., Ubelaker., D. H.: Standards for data collection from human skeletal remains. In: Proceedings of a Seminar at the Field Museum of Natural History, Arkansas Archaeology Research Series, vol. 44 (1994)
5.
6.
Zurück zum Zitat Garcia, D.: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54(4), 1167–1178 (2010) MathSciNetCrossRef Garcia, D.: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54(4), 1167–1178 (2010) MathSciNetCrossRef
7.
Zurück zum Zitat Garvin, H., Klales, A.: A validation study of the Langley et al. (2017) decision tree model for sex estimation. J. Forensic Sci. 63, 1243–1251 (2017) CrossRef Garvin, H., Klales, A.: A validation study of the Langley et al. (2017) decision tree model for sex estimation. J. Forensic Sci. 63, 1243–1251 (2017) CrossRef
8.
Zurück zum Zitat Graw, M., Czarnetzki, A., Haffner, H.T.: The form of the supraorbital margin as a criterion in identification of sex from the skull: investigations based on modern human skulls. Am. J. Phys. Anthropol. 108, 91–96 (1999) CrossRef Graw, M., Czarnetzki, A., Haffner, H.T.: The form of the supraorbital margin as a criterion in identification of sex from the skull: investigations based on modern human skulls. Am. J. Phys. Anthropol. 108, 91–96 (1999) CrossRef
9.
Zurück zum Zitat He, X., Niyogi, P.: Locality preserving projections. In: Neural Information Processing Systems, vol. 16, p. 153 (2004) He, X., Niyogi, P.: Locality preserving projections. In: Neural Information Processing Systems, vol. 16, p. 153 (2004)
11.
Zurück zum Zitat Langley, N.R., Dudzik, B., Cloutier, A.: A decision tree for nonmetric sex assessment from the skull. J. Forensic Sci. 61(3), 743–751 (2017) Langley, N.R., Dudzik, B., Cloutier, A.: A decision tree for nonmetric sex assessment from the skull. J. Forensic Sci. 61(3), 743–751 (2017)
13.
Zurück zum Zitat Pinto, S.C.D., Urbanová, P., Cesar, R.M.: Two-dimensional wavelet analysis of supraorbital margins of the human skull for characterizing sexual dimorphism. IEEE Trans. Inf. Forensics Secur. 11(7), 1542–1548 (2016) CrossRef Pinto, S.C.D., Urbanová, P., Cesar, R.M.: Two-dimensional wavelet analysis of supraorbital margins of the human skull for characterizing sexual dimorphism. IEEE Trans. Inf. Forensics Secur. 11(7), 1542–1548 (2016) CrossRef
14.
Zurück zum Zitat Powell, M.J.: A method for non-linear constraints in minimization problems. In: UKAEA (1969) Powell, M.J.: A method for non-linear constraints in minimization problems. In: UKAEA (1969)
15.
Zurück zum Zitat Ren, J., Jiang, J., Wang, D., Ipson, S.S.: Fusion of intensity and inter-component chromatic difference for effective and robust colour edge detection. IET Image Process. 4, 294–301 (2010) CrossRef Ren, J., Jiang, J., Wang, D., Ipson, S.S.: Fusion of intensity and inter-component chromatic difference for effective and robust colour edge detection. IET Image Process. 4, 294–301 (2010) CrossRef
16.
Zurück zum Zitat Scheuer, L.: Application of osteology to forensic medicine. Clin. Anat. 15(4), 297–312 (2002) CrossRef Scheuer, L.: Application of osteology to forensic medicine. Clin. Anat. 15(4), 297–312 (2002) CrossRef
18.
Zurück zum Zitat Spradley, M.K., Jantz, R.L.: Sex estimation in forensic anthropology: skull versus postcranial elements. J. Forensic Sci. 56(2), 289–296 (2011) CrossRef Spradley, M.K., Jantz, R.L.: Sex estimation in forensic anthropology: skull versus postcranial elements. J. Forensic Sci. 56(2), 289–296 (2011) CrossRef
19.
Zurück zum Zitat Walker, P.L.: Sexing skulls using discriminant function analysis of visually assessed traits. Am. J. Phys. Anthropol. 136(1), 39–50 (2008) CrossRef Walker, P.L.: Sexing skulls using discriminant function analysis of visually assessed traits. Am. J. Phys. Anthropol. 136(1), 39–50 (2008) CrossRef
20.
Zurück zum Zitat Wang, Z., Ren, J., Zhang, D., Sun, M., Jiang, J.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 287, 68–83 (2018) CrossRef Wang, Z., Ren, J., Zhang, D., Sun, M., Jiang, J.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 287, 68–83 (2018) CrossRef
21.
Zurück zum Zitat Williams, B.A., Rogers, T.L.: Evaluating the accuracy and precision of cranial morphological traits for sex determination. J. Forensic Sci. 51(4), 729–735 (2006) CrossRef Williams, B.A., Rogers, T.L.: Evaluating the accuracy and precision of cranial morphological traits for sex determination. J. Forensic Sci. 51(4), 729–735 (2006) CrossRef
22.
Zurück zum Zitat Yan, Y., Ren, J., Li, Y., Windmill, J., Ijomah, W.: Fusion of dominant colour and spatial layout features for effective image retrieval of coloured logos and trademarks. In: 2015 IEEE International Conference on Multimedia Big Data (BigMM), pp. 306–311 (2015) Yan, Y., Ren, J., Li, Y., Windmill, J., Ijomah, W.: Fusion of dominant colour and spatial layout features for effective image retrieval of coloured logos and trademarks. In: 2015 IEEE International Conference on Multimedia Big Data (BigMM), pp. 306–311 (2015)
23.
Zurück zum Zitat Yan, Y., Ren, J., Sun, G., Zhao, H., Han, J., Li, X.: Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement. Pattern Recognit. 79, 65–78 (2018) CrossRef Yan, Y., Ren, J., Sun, G., Zhao, H., Han, J., Li, X.: Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement. Pattern Recognit. 79, 65–78 (2018) CrossRef
24.
Zurück zum Zitat Yan, Y., Ren, J., Zhao, H., Sun, G., Wang, Z., Zheng, J.: Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos. Cogn. Comput. 10, 94–104 (2018) CrossRef Yan, Y., Ren, J., Zhao, H., Sun, G., Wang, Z., Zheng, J.: Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos. Cogn. Comput. 10, 94–104 (2018) CrossRef
25.
Zurück zum Zitat Zheng, J., Liu, Y., Ren, J., Zhu, T., Yan, Y., Yang, H.: Fusion of block and keypoints based approaches for effective copy-move image forgery detection. Multidimens. Syst. Signal Process. 27, 989–1005 (2016) MathSciNetCrossRef Zheng, J., Liu, Y., Ren, J., Zhu, T., Yan, Y., Yang, H.: Fusion of block and keypoints based approaches for effective copy-move image forgery detection. Multidimens. Syst. Signal Process. 27, 989–1005 (2016) MathSciNetCrossRef
26.
Zurück zum Zitat Zhou, Y., Zeng, F.Z., Zhao, H.M., Murray, P., Ren, J.: Hierarchical visual perception and two-dimensional compressive sensing for effective content-based color image retrieval. Cogn. Comput. 8(5), 877–889 (2016) CrossRef Zhou, Y., Zeng, F.Z., Zhao, H.M., Murray, P., Ren, J.: Hierarchical visual perception and two-dimensional compressive sensing for effective content-based color image retrieval. Cogn. Comput. 8(5), 877–889 (2016) CrossRef
Metadaten
Titel
Novel Group Variable Selection for Salient Skull Region Selection and Sex Determination
verfasst von
Olasimbo Ayodeji Arigbabu
Iman Yi Liao
Nurliza Abdullah
Mohamad Helmee Mohamad Noor
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00563-4_24

Premium Partner