Skip to main content
Erschienen in:

01.07.2024 | Original Paper

Novel high-gain boost converter with experimentally validated ADRC control technique for renewable energy applications

verfasst von: Priyanshu Kumar, Moina Ajmeri, Ashutosh Kumar Singh, Rajib Kumar Mandal

Erschienen in: Electrical Engineering | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a switched capacitor-based high-gain boost converter is designed that may be used for high-voltage applications. The suggested topology uses two capacitors that get connected in series or parallel for charging and discharging with the help of switches. The primary function of switches is to switch between three duty ratios that describe the converter’s benefit in achieving high voltage gain without employing an individual high-duty ratio. The examination of steady-state characteristics and voltage gain using three alternative duty ratios is described. An ADRC-based controller has been designed for the proposed circuit that is able to regulate the output in the presence of various types of disturbances. A detailed loss analysis has been performed by calculating the conduction and switching losses of MOSFETs and diodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Varesi K, Ghorbani M (2020) A generalized common-ground single-switch continuous input-current boost converter favourable for dc microgrids. Int J Circuit Theory Appl 48(10):1658–1675CrossRefMATH Varesi K, Ghorbani M (2020) A generalized common-ground single-switch continuous input-current boost converter favourable for dc microgrids. Int J Circuit Theory Appl 48(10):1658–1675CrossRefMATH
2.
Zurück zum Zitat Zhao Q, Lee FC (2003) High-efficiency, high step-up dc-dc converters. IEEE Trans Power Electron 18(1):65–73CrossRefMATH Zhao Q, Lee FC (2003) High-efficiency, high step-up dc-dc converters. IEEE Trans Power Electron 18(1):65–73CrossRefMATH
3.
Zurück zum Zitat Varesi K, Hassanpour N, Saeidabadi S (2020) Novel high step-up dc-dc converter with increased voltage gain per devices and continuous input current suitable for dc microgrid applications. Int J Circuit Theory Appl 48(10):1820–1837CrossRef Varesi K, Hassanpour N, Saeidabadi S (2020) Novel high step-up dc-dc converter with increased voltage gain per devices and continuous input current suitable for dc microgrid applications. Int J Circuit Theory Appl 48(10):1820–1837CrossRef
4.
Zurück zum Zitat Ajami A, Ardi H, Farakhor A (2014) A novel high step-up dc/dc converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications. IEEE Trans Power Electron 30(8):4255–4263CrossRef Ajami A, Ardi H, Farakhor A (2014) A novel high step-up dc/dc converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications. IEEE Trans Power Electron 30(8):4255–4263CrossRef
5.
Zurück zum Zitat Chen S-M, Lao M-L, Hsieh Y-H, Liang T-J, Chen K-H (2014) A novel switched-coupled-inductor dc-dc step-up converter and its derivatives. IEEE Trans Ind Appl 51(1):309–314CrossRefMATH Chen S-M, Lao M-L, Hsieh Y-H, Liang T-J, Chen K-H (2014) A novel switched-coupled-inductor dc-dc step-up converter and its derivatives. IEEE Trans Ind Appl 51(1):309–314CrossRefMATH
6.
Zurück zum Zitat González R, Lopez J, Sanchis P, Marroyo L (2007) Transformerless inverter for single-phase photovoltaic systems. IEEE Trans Power Electron 22(2):693–697CrossRef González R, Lopez J, Sanchis P, Marroyo L (2007) Transformerless inverter for single-phase photovoltaic systems. IEEE Trans Power Electron 22(2):693–697CrossRef
7.
Zurück zum Zitat Tarzamni H, Gohari HS, Sabahi M, Kyyrä J (2023) Non-isolated high step-up dc-dc converters: comparative review and metrics applicability. IEEE Trans Power Electron Tarzamni H, Gohari HS, Sabahi M, Kyyrä J (2023) Non-isolated high step-up dc-dc converters: comparative review and metrics applicability. IEEE Trans Power Electron
8.
Zurück zum Zitat Lee SS, Chu B, Lim CS, Lee K-B (2019) Two-inductor non-isolated dc-dc converter with high step-up voltage gain. J Power Electron 19(5):1069–1073MATH Lee SS, Chu B, Lim CS, Lee K-B (2019) Two-inductor non-isolated dc-dc converter with high step-up voltage gain. J Power Electron 19(5):1069–1073MATH
9.
Zurück zum Zitat Lakshmi M, Hemamalini S (2017) Nonisolated high gain dc-dc converter for dc microgrids. IEEE Trans Ind Electron 65(2):1205–1212CrossRef Lakshmi M, Hemamalini S (2017) Nonisolated high gain dc-dc converter for dc microgrids. IEEE Trans Ind Electron 65(2):1205–1212CrossRef
10.
Zurück zum Zitat Ioinovici A (2001) Switched-capacitor power electronics circuits. IEEE Circuits Syst Mag 1(3):37–42CrossRefMATH Ioinovici A (2001) Switched-capacitor power electronics circuits. IEEE Circuits Syst Mag 1(3):37–42CrossRefMATH
11.
Zurück zum Zitat Tran V-T, Nguyen M-K, Choi Y-O, Cho G-B (2018) Switched-capacitor-based high boost dc-dc converter. Energies 11(4):987CrossRef Tran V-T, Nguyen M-K, Choi Y-O, Cho G-B (2018) Switched-capacitor-based high boost dc-dc converter. Energies 11(4):987CrossRef
12.
Zurück zum Zitat Nguyen M-K, Duong T-D, Lim Y-C (2017) Switched-capacitor-based dual-switch high-boost dc-dc converter. IEEE Trans Power Electron 33(5):4181–4189CrossRef Nguyen M-K, Duong T-D, Lim Y-C (2017) Switched-capacitor-based dual-switch high-boost dc-dc converter. IEEE Trans Power Electron 33(5):4181–4189CrossRef
13.
Zurück zum Zitat Kumar P, Ajmeri M (2022) Comparative analysis of different controlling techniques of boost converter. In: (2022) IEEE 7th International conference for convergence in technology (I2CT). IEEE:1–6 Kumar P, Ajmeri M (2022) Comparative analysis of different controlling techniques of boost converter. In: (2022) IEEE 7th International conference for convergence in technology (I2CT). IEEE:1–6
14.
Zurück zum Zitat Kumar P, Ajmeri M (2023) Robust control of a single-ended primary inductor converter using adrc technique. Eng Res Express 6(1):015010CrossRefMATH Kumar P, Ajmeri M (2023) Robust control of a single-ended primary inductor converter using adrc technique. Eng Res Express 6(1):015010CrossRefMATH
15.
Zurück zum Zitat Ahmad S, Ali A (2019) Active disturbance rejection control of dc-dc boost converter: a review with modifications for improved performance. IET Power Electron 12(8):2095–2107CrossRefMATH Ahmad S, Ali A (2019) Active disturbance rejection control of dc-dc boost converter: a review with modifications for improved performance. IET Power Electron 12(8):2095–2107CrossRefMATH
16.
Zurück zum Zitat Han J (2009) From pid to active disturbance rejection control. IEEE Trans Industr Electron 56(3):900–906CrossRefMATH Han J (2009) From pid to active disturbance rejection control. IEEE Trans Industr Electron 56(3):900–906CrossRefMATH
17.
Zurück zum Zitat Gao Z (2006) Active disturbance rejection control: a paradigm shift in feedback control system design. In: 2006 American control conference. IEEE, pp. 7 Gao Z (2006) Active disturbance rejection control: a paradigm shift in feedback control system design. In: 2006 American control conference. IEEE, pp. 7
18.
Zurück zum Zitat Yang L-S, Liang T-J (2011) Analysis and implementation of a novel bidirectional dc-dc converter. IEEE Trans Industr Electron 59(1):422–434CrossRefMATH Yang L-S, Liang T-J (2011) Analysis and implementation of a novel bidirectional dc-dc converter. IEEE Trans Industr Electron 59(1):422–434CrossRefMATH
19.
Zurück zum Zitat Rashid MH (2017) Power electronics handbook.Butterworth-heinemann Rashid MH (2017) Power electronics handbook.Butterworth-heinemann
20.
Zurück zum Zitat Gao Z (2016) Active disturbance rejection control for nonlinear fractional-order systems. Int J Robust Nonlinear Control 26(4):876–892MathSciNetCrossRefMATH Gao Z (2016) Active disturbance rejection control for nonlinear fractional-order systems. Int J Robust Nonlinear Control 26(4):876–892MathSciNetCrossRefMATH
21.
Zurück zum Zitat Ali AIM, Sayed MA, Takeshita T (2021) Isolated single-phase single-stage dc-ac cascaded transformer-based multilevel inverter for stand-alone and grid-tied applications. Int J Electr Power Energy Syst 125:106534CrossRef Ali AIM, Sayed MA, Takeshita T (2021) Isolated single-phase single-stage dc-ac cascaded transformer-based multilevel inverter for stand-alone and grid-tied applications. Int J Electr Power Energy Syst 125:106534CrossRef
22.
Zurück zum Zitat Graovac D, Purschel M, Kiep A (2006) Mosfet power losses calculation using the data-sheet parameters. Infineon Application Note 1:1–23 Graovac D, Purschel M, Kiep A (2006) Mosfet power losses calculation using the data-sheet parameters. Infineon Application Note 1:1–23
Metadaten
Titel
Novel high-gain boost converter with experimentally validated ADRC control technique for renewable energy applications
verfasst von
Priyanshu Kumar
Moina Ajmeri
Ashutosh Kumar Singh
Rajib Kumar Mandal
Publikationsdatum
01.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2025
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-024-02545-y