Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 11-12/2021

23.04.2021 | ORIGINAL ARTICLE

Novel monitoring method for material removal rate considering quantitative wear of abrasive belts based on LightGBM learning algorithm

verfasst von: Nina Wang, Guangpeng Zhang, Wanjing Pang, Lijuan Ren, Yupeng Wang

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 11-12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wear is an inevitable problem in abrasive belt grinding, and the material removal rate decreases with continuous wear of the abrasive belt. This indicates that the grinding control force is affected by two dynamic factors, namely the actual material removal and abrasive belt wear state. To obtain an accurate force-control model to achieve uniform material removal, a new method for online monitoring of abrasive belt material removal rates and their corresponding wear statuses is proposed herein using only the grinding sound signals. By performing material removal rate and abrasive belt wear experiments, the grinding sound signals during processing are obtained. The wear states of the abrasive belt are quantified using the newly defined gray-mean values of the topographical images of the belt into different levels. The grinding sound signals are quantitatively described via the statistical features of their sound wavelet signals. The statistical features related to material removal rates or belt wear states are selected on the basis of the Pearson correlation coefficients. The prediction models for material removal rate and wear levels of the abrasive based on the selected features are then established using the LightGBM learning algorithm. Experimental datasets are used to train and validate the established model. The test results show that the evaluation parameters of the prediction model of the material removal rate are all within 5%. Further, the accuracy of the wear levels of the abrasive belt can exceed 91%. Compared with other prediction models, the new LightGBM models exhibit superiority in terms of time factor without loss of accuracy of the model. It is thus proved that the proposed method can provide a good basis for monitoring the material removal rate and belt wear in the abrasive belt grinding process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang YJ, Huang Y, Chen YX, Yang ZS (2016) Model of an abrasive belt grinding surface removal contour and its application. Int J Adv Manuf Technol 82(9–12):2113–2122CrossRef Wang YJ, Huang Y, Chen YX, Yang ZS (2016) Model of an abrasive belt grinding surface removal contour and its application. Int J Adv Manuf Technol 82(9–12):2113–2122CrossRef
2.
Zurück zum Zitat Uhlmann E, Lypovka P, Hochschild L, Schröer N (2016) Influence of rail grinding process parameters on rail surface roughness and surface layer hardness. Wear 366–367:287–293CrossRef Uhlmann E, Lypovka P, Hochschild L, Schröer N (2016) Influence of rail grinding process parameters on rail surface roughness and surface layer hardness. Wear 366–367:287–293CrossRef
3.
Zurück zum Zitat Wang RQ, Li JY, Liu YM, Wang WX (2016) Modeling material removal rate of heavy belt-grinding in manufacturing of U71Mn material. Key Eng Mater 693:1082–1089CrossRef Wang RQ, Li JY, Liu YM, Wang WX (2016) Modeling material removal rate of heavy belt-grinding in manufacturing of U71Mn material. Key Eng Mater 693:1082–1089CrossRef
4.
Zurück zum Zitat Yang ZY, Xu XH, Zhu DH, Yan SJ, Ding H (2019) On energetic evaluation of robotic belt grinding mechanisms based on single spherical abrasive grain model. Int J Adv Manuf Technol 104(9–12):4539–4548CrossRef Yang ZY, Xu XH, Zhu DH, Yan SJ, Ding H (2019) On energetic evaluation of robotic belt grinding mechanisms based on single spherical abrasive grain model. Int J Adv Manuf Technol 104(9–12):4539–4548CrossRef
5.
Zurück zum Zitat Wuest T, Irgens C, Thoben K (2014) An approach to monitoring quality in manufacturing using supervised machine learning on product state data. J Intell Manuf 25(5):1167–1180CrossRef Wuest T, Irgens C, Thoben K (2014) An approach to monitoring quality in manufacturing using supervised machine learning on product state data. J Intell Manuf 25(5):1167–1180CrossRef
6.
Zurück zum Zitat Wang GL, Zhou XQ, Yang X, Zhou HB, Chen GG (2015) Material removal profile for large mould polishing with coated abrasives. Int J Adv Manuf Technol 80(1–4):625–635CrossRef Wang GL, Zhou XQ, Yang X, Zhou HB, Chen GG (2015) Material removal profile for large mould polishing with coated abrasives. Int J Adv Manuf Technol 80(1–4):625–635CrossRef
7.
Zurück zum Zitat Duan JH, Zhang YM, Shi YY (2016) Belt grinding process with force control system for blade of aero-engine. Proc Inst Mech eng 230(5):1–11 Duan JH, Zhang YM, Shi YY (2016) Belt grinding process with force control system for blade of aero-engine. Proc Inst Mech eng 230(5):1–11
8.
Zurück zum Zitat Wang YQ, Hou B, Wang FB, Ji ZC (2017) A controllable material removal strategy considering force-geometry model of belt grinding processes. Int J Adv Manuf Technol 93(1–4):241–251CrossRef Wang YQ, Hou B, Wang FB, Ji ZC (2017) A controllable material removal strategy considering force-geometry model of belt grinding processes. Int J Adv Manuf Technol 93(1–4):241–251CrossRef
9.
Zurück zum Zitat Song YX, Liang W, Yang Y (2012) A method for grinding removal control of a robot belt grinding system. J Intell Manuf 23(5):1903–1913CrossRef Song YX, Liang W, Yang Y (2012) A method for grinding removal control of a robot belt grinding system. J Intell Manuf 23(5):1903–1913CrossRef
10.
Zurück zum Zitat Hamann G (1998) Modeling of the removal behavior of elastic robot-guided grinding tools. University Stuggart, Stuttgart Hamann G (1998) Modeling of the removal behavior of elastic robot-guided grinding tools. University Stuggart, Stuttgart
11.
Zurück zum Zitat Cabaravdic B, Kuhlenköetter (2005) Belt grinding processes optimization. Mo Metal loberfläche 4:44–47 Cabaravdic B, Kuhlenköetter (2005) Belt grinding processes optimization. Mo Metal loberfläche 4:44–47
12.
Zurück zum Zitat Ren X, Cabaravdic M, Zhang X, Kuhlenkötter B (2007) A local process model for simulation of robotic beltgrinding. Int J Mach Tool Manu 47(6):962–970CrossRef Ren X, Cabaravdic M, Zhang X, Kuhlenkötter B (2007) A local process model for simulation of robotic beltgrinding. Int J Mach Tool Manu 47(6):962–970CrossRef
13.
Zurück zum Zitat Wang W, Liu F, Liu Z, Yun C (2011) Prediction of depth of cut for robotic belt grinding. Int J Adv Manuf Technol 91(1–4):699–708 Wang W, Liu F, Liu Z, Yun C (2011) Prediction of depth of cut for robotic belt grinding. Int J Adv Manuf Technol 91(1–4):699–708
14.
Zurück zum Zitat Ren X, Kuhlenkötter B (2008) Real-time simulation and visualization of robotic belt grinding processes. Int J Adv Manuf Technol 35:1090–1099CrossRef Ren X, Kuhlenkötter B (2008) Real-time simulation and visualization of robotic belt grinding processes. Int J Adv Manuf Technol 35:1090–1099CrossRef
15.
Zurück zum Zitat Gao KY, Chen HB, Zhang XQ, Ren XK, Chen XQ (2019) A novel material removal prediction method based on acoustic sensing and ensemble XGBoost learning algorithm for robotic belt grinding of Inconel 718. Int J Adv Manuf Technol 105(1–4):217–232CrossRef Gao KY, Chen HB, Zhang XQ, Ren XK, Chen XQ (2019) A novel material removal prediction method based on acoustic sensing and ensemble XGBoost learning algorithm for robotic belt grinding of Inconel 718. Int J Adv Manuf Technol 105(1–4):217–232CrossRef
16.
Zurück zum Zitat Ren LJ, Zhang GP, Wang Y, Zhang Q, Huang YM (2019) A new in-process material removal rate monitoring approach in abrasive belt grinding. Int J Adv Manuf Technol 104(2):2715–2726CrossRef Ren LJ, Zhang GP, Wang Y, Zhang Q, Huang YM (2019) A new in-process material removal rate monitoring approach in abrasive belt grinding. Int J Adv Manuf Technol 104(2):2715–2726CrossRef
17.
Zurück zum Zitat Zhang XQ, Chen HB, Xu JJ, Song XF, Wang JW, Chen XQ (2018) A novel sound-based belt condition monitoring method for robotic grinding using optimally pruned extreme learning machine. J Mater Process Technol 260:9–19CrossRef Zhang XQ, Chen HB, Xu JJ, Song XF, Wang JW, Chen XQ (2018) A novel sound-based belt condition monitoring method for robotic grinding using optimally pruned extreme learning machine. J Mater Process Technol 260:9–19CrossRef
18.
Zurück zum Zitat Pandiyan V, Caesarendra W, Tjahjowidodo T, Praveen G (2017) Predictive modelling and analysis of process parameters on material removal characteristics in abrasive belt grinding process. Appl Sci 7(4):363CrossRef Pandiyan V, Caesarendra W, Tjahjowidodo T, Praveen G (2017) Predictive modelling and analysis of process parameters on material removal characteristics in abrasive belt grinding process. Appl Sci 7(4):363CrossRef
19.
Zurück zum Zitat Cheng C, Li JY, Liu YM, Nie M, Wang WX (2019) Deep convolutional neural network-based in-process tool condition monitoring in abrasive belt grinding. Comput Ind 106:1–13CrossRef Cheng C, Li JY, Liu YM, Nie M, Wang WX (2019) Deep convolutional neural network-based in-process tool condition monitoring in abrasive belt grinding. Comput Ind 106:1–13CrossRef
20.
Zurück zum Zitat Cheng C, Li JY, Liu YM, Nie M, Wang WX (2020) An online belt wear monitoring method for abrasive belt grinding under varying grinding parameters. J Manuf Process 50:80–89CrossRef Cheng C, Li JY, Liu YM, Nie M, Wang WX (2020) An online belt wear monitoring method for abrasive belt grinding under varying grinding parameters. J Manuf Process 50:80–89CrossRef
21.
Zurück zum Zitat Pandiyan V, Caesarendra W, Tjahjowidodo T, Tan HH (2018) In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. J Manuf Process 31:199–213CrossRef Pandiyan V, Caesarendra W, Tjahjowidodo T, Tan HH (2018) In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. J Manuf Process 31:199–213CrossRef
22.
Zurück zum Zitat Salgado DR, Alonso FJ (2007) An approach based on current and sound signals for in-process tool wear monitoring. Int J Mach Tools Manuf 47:2140–2152CrossRef Salgado DR, Alonso FJ (2007) An approach based on current and sound signals for in-process tool wear monitoring. Int J Mach Tools Manuf 47:2140–2152CrossRef
23.
Zurück zum Zitat Khellouki A, Rech J, Zahouani H (2007) The effect of abrasive grain’s wear and contact conditions on surface texture in belt finishing. Wear 263(1):81–87CrossRef Khellouki A, Rech J, Zahouani H (2007) The effect of abrasive grain’s wear and contact conditions on surface texture in belt finishing. Wear 263(1):81–87CrossRef
24.
Zurück zum Zitat Li HZ, Zeng H, Chen XQ (2006) An experimental study of tool wear and cutting force variation in the end milling of inconel 718 with coated carbide inserts. J Mater Process Technol 180:296–304CrossRef Li HZ, Zeng H, Chen XQ (2006) An experimental study of tool wear and cutting force variation in the end milling of inconel 718 with coated carbide inserts. J Mater Process Technol 180:296–304CrossRef
25.
Zurück zum Zitat Ke GL, Meng Q, Finley T, Wang TF, Chen W, Ma WD, Ye QW, Liu TY (2017) LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Ke GL, Meng Q, Finley T, Wang TF, Chen W, Ma WD, Ye QW, Liu TY (2017) LightGBM: A Highly Efficient Gradient Boosting Decision Tree.
Metadaten
Titel
Novel monitoring method for material removal rate considering quantitative wear of abrasive belts based on LightGBM learning algorithm
verfasst von
Nina Wang
Guangpeng Zhang
Wanjing Pang
Lijuan Ren
Yupeng Wang
Publikationsdatum
23.04.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 11-12/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-06988-6

Weitere Artikel der Ausgabe 11-12/2021

The International Journal of Advanced Manufacturing Technology 11-12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.