Skip to main content
Erschienen in: Quantum Information Processing 5/2021

01.05.2021

Novel two-party quantum private comparison via quantum walks on circle

verfasst von: Feng-Lin Chen, Hai Zhang, Su-Gen Chen, Wen-Tao Cheng

Erschienen in: Quantum Information Processing | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The quantum private comparison aims to make the size comparison of two participants’ private information without leaking the private data of their own with quantum mechanism. In this paper, different from the current method of using single particle or entangled state as the information carrier, a novel two-party quantum private comparison protocol is firstly proposed via quantum walks on circle. In the protocol, a third party is assumed to be semi-honest and allowed to misbehave on his own, but cannot conspire with either of the two dishonest participants and obtain the participants’ private information. The protocol adopts the two-particle quantum walks state on circle rather than entangled state as the initial quantum resource and only needs measurement and quantum walks operator without the unitary operation and quantum entanglement swapping. The two-particle state is transferred as a whole among different parties, which reduces the protocol complexity and avoids the chance of being attacked. It can implement the equality comparison of private information, but also the size comparison. Security analyses show that this protocol is resistant to the external and internal malicious attacks, which can also determine the disputes over the judgment result of the third party. Compared with other quantum private comparison protocols, the proposed protocol has better flexibility and universality.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), Chicago, IL, USA, 1982, pp. 160–164 Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), Chicago, IL, USA, 1982, pp. 160–164
2.
Zurück zum Zitat Arute, F., Arya, K., Babbush, R., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505–511 (2019)ADSCrossRef Arute, F., Arya, K., Babbush, R., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505–511 (2019)ADSCrossRef
3.
Zurück zum Zitat Qiang, X.G., Zhou, X.Q., Aungskunsiri, K., et al.: Quantum processing by remote quantum control. Quantum Sci. Technol. 2, 045002 (2017)ADSCrossRef Qiang, X.G., Zhou, X.Q., Aungskunsiri, K., et al.: Quantum processing by remote quantum control. Quantum Sci. Technol. 2, 045002 (2017)ADSCrossRef
4.
5.
Zurück zum Zitat Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)ADSCrossRef Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)ADSCrossRef
6.
Zurück zum Zitat Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)ADSMathSciNetMATHCrossRef Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)ADSMathSciNetMATHCrossRef
7.
Zurück zum Zitat Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)ADSMATHCrossRef Yang, Y.G., Gao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)ADSMATHCrossRef
8.
Zurück zum Zitat Yang, Y.G., Xia, J., Jia, X., et al.: New quantum private comparison protocol without entanglement. Int. J. Quantum Inf. 10(06), 1250065 (2012)MathSciNetMATHCrossRef Yang, Y.G., Xia, J., Jia, X., et al.: New quantum private comparison protocol without entanglement. Int. J. Quantum Inf. 10(06), 1250065 (2012)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Huang, W., Wen, Q.Y., Lin, B., et al.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China-Phys. Mech. 56(9), 1670–1678 (2013)CrossRef Huang, W., Wen, Q.Y., Lin, B., et al.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China-Phys. Mech. 56(9), 1670–1678 (2013)CrossRef
10.
Zurück zum Zitat Yu, C.H., Guo, G.D., Lin, S.: Quantum private comparison with d-level single-particle states. Phys. Scr. 88(6), 065013 (2013)ADSCrossRef Yu, C.H., Guo, G.D., Lin, S.: Quantum private comparison with d-level single-particle states. Phys. Scr. 88(6), 065013 (2013)ADSCrossRef
11.
Zurück zum Zitat Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. Quantum Inf. Process. 16(7), 180 (2017)ADSMathSciNetMATHCrossRef Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. Quantum Inf. Process. 16(7), 180 (2017)ADSMathSciNetMATHCrossRef
12.
Zurück zum Zitat Pan, H.M.: Two-party quantum private comparison using single photons. Int. J. Theor. Phys. 57, 3389–3395 (2018)MATHCrossRef Pan, H.M.: Two-party quantum private comparison using single photons. Int. J. Theor. Phys. 57, 3389–3395 (2018)MATHCrossRef
13.
Zurück zum Zitat Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57(4), 583–588 (2012)ADSMathSciNetMATHCrossRef Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57(4), 583–588 (2012)ADSMathSciNetMATHCrossRef
14.
Zurück zum Zitat Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)MathSciNetMATHCrossRef Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Wang, C., Xu, G., Yang, Y.X.: Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs. Int. J. Quantum Inf. 11(04), 1350039 (2013)MathSciNetMATHCrossRef Wang, C., Xu, G., Yang, Y.X.: Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs. Int. J. Quantum Inf. 11(04), 1350039 (2013)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semihonest third party. Quantum Inf. Process. 12(2), 877–885 (2013)ADSMathSciNetMATHCrossRef Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semihonest third party. Quantum Inf. Process. 12(2), 877–885 (2013)ADSMathSciNetMATHCrossRef
17.
Zurück zum Zitat Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981–1990 (2013)ADSMathSciNetMATHCrossRef Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981–1990 (2013)ADSMathSciNetMATHCrossRef
18.
Zurück zum Zitat Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12(1), 559–568 (2013)ADSMathSciNetMATHCrossRef Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12(1), 559–568 (2013)ADSMathSciNetMATHCrossRef
19.
Zurück zum Zitat Guo, F.Z., Gao, F., Qin, S.J., et al.: Quantum private comparison protocol based on entanglement swapping of d-level Bell states. Quantum Inf. Process. 12(8), 2793–2802 (2013)ADSMathSciNetMATHCrossRef Guo, F.Z., Gao, F., Qin, S.J., et al.: Quantum private comparison protocol based on entanglement swapping of d-level Bell states. Quantum Inf. Process. 12(8), 2793–2802 (2013)ADSMathSciNetMATHCrossRef
20.
Zurück zum Zitat Zhang, W.W., Li, D., Zhang, K.J., Zuo, H.J.: A quantum protocol for millionaire problem with Bell states. Quantum Inf. Process. 13(6), 2241–2249 (2013)ADSMathSciNetMATHCrossRef Zhang, W.W., Li, D., Zhang, K.J., Zuo, H.J.: A quantum protocol for millionaire problem with Bell states. Quantum Inf. Process. 13(6), 2241–2249 (2013)ADSMathSciNetMATHCrossRef
21.
Zurück zum Zitat Liu, W.J., Liu, C., Chen, H.W., et al.: Cryptanalysis and improvement of quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 62(2), 210–214 (2014)ADSMathSciNetMATHCrossRef Liu, W.J., Liu, C., Chen, H.W., et al.: Cryptanalysis and improvement of quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 62(2), 210–214 (2014)ADSMathSciNetMATHCrossRef
22.
Zurück zum Zitat Tan, X.Q., Zhang, X.Q., Li, J.: Big data quantum private comparison with the intelligent third party. J. Ambient Intell. Hum. Comput. 6(6), 797–806 (2015)CrossRef Tan, X.Q., Zhang, X.Q., Li, J.: Big data quantum private comparison with the intelligent third party. J. Ambient Intell. Hum. Comput. 6(6), 797–806 (2015)CrossRef
23.
Zurück zum Zitat Wang, F., Luo, M., Li, H., et al.: Quantum private comparison based on quantum dense coding. Sci. China-Inf. Sci. 59(11), 112501 (2016)CrossRef Wang, F., Luo, M., Li, H., et al.: Quantum private comparison based on quantum dense coding. Sci. China-Inf. Sci. 59(11), 112501 (2016)CrossRef
24.
Zurück zum Zitat Chen, X.B., Xu, G., Niu, X.X., et al.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)ADSCrossRef Chen, X.B., Xu, G., Niu, X.X., et al.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)ADSCrossRef
25.
Zurück zum Zitat Lin, J., Tseng, H.Y., Hwang, T.: Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284(9), 2412–2414 (2011)ADSCrossRef Lin, J., Tseng, H.Y., Hwang, T.: Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284(9), 2412–2414 (2011)ADSCrossRef
26.
Zurück zum Zitat Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011)ADSCrossRef Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011)ADSCrossRef
27.
Zurück zum Zitat Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51(11), 3596–3604 (2012)MathSciNetMATHCrossRef Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51(11), 3596–3604 (2012)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)ADSCrossRef Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)ADSCrossRef
29.
Zurück zum Zitat Zhang, W.W., Li, D., Li, Y.B.: Quantum private comparison protocol with W States. Int. J. Theor. Phys. 53(5), 1723–1729 (2014)CrossRef Zhang, W.W., Li, D., Li, Y.B.: Quantum private comparison protocol with W States. Int. J. Theor. Phys. 53(5), 1723–1729 (2014)CrossRef
30.
Zurück zum Zitat Xu, G.A., Chen, X.B., Wei, Z.H., et al.: An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int. J. Quantum Inf. 10(4), 1250045 (2012)MathSciNetCrossRef Xu, G.A., Chen, X.B., Wei, Z.H., et al.: An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int. J. Quantum Inf. 10(4), 1250045 (2012)MathSciNetCrossRef
31.
Zurück zum Zitat Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52(1), 212–218 (2013)MathSciNetMATHCrossRef Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52(1), 212–218 (2013)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Li, C.Y., Chen, X.B., Li, H., et al.: Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Inf. Process. 18(5), 158 (2019)ADSMathSciNetCrossRef Li, C.Y., Chen, X.B., Li, H., et al.: Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Inf. Process. 18(5), 158 (2019)ADSMathSciNetCrossRef
33.
Zurück zum Zitat Liu, W., Wang, Y.B., Jiang, Z.T., et al.: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)MathSciNetMATHCrossRef Liu, W., Wang, Y.B., Jiang, Z.T., et al.: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Jia, H.Y., Wen, Q.Y., Li, Y.B., Cao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51(4), 1187–1194 (2012)MathSciNetMATHCrossRef Jia, H.Y., Wen, Q.Y., Li, Y.B., Cao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51(4), 1187–1194 (2012)MathSciNetMATHCrossRef
35.
Zurück zum Zitat Liu, W., Wang, Y.B., Jiang, Z.T., et al.: New quantum private comparison protocol using \(\chi \)-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)MathSciNetMATHCrossRef Liu, W., Wang, Y.B., Jiang, Z.T., et al.: New quantum private comparison protocol using \(\chi \)-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with \(\chi \)-type entangled states. Int. J. Theor. Phys. 52(11), 4185–4194 (2013)MathSciNetMATHCrossRef Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with \(\chi \)-type entangled states. Int. J. Theor. Phys. 52(11), 4185–4194 (2013)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Pan, H.M.: Quantum private comparison based on \(\chi \)-type entangled states. Int. J. Theor. Phys. 56(10), 3340–3347 (2017)MathSciNetMATHCrossRef Pan, H.M.: Quantum private comparison based on \(\chi \)-type entangled states. Int. J. Theor. Phys. 56(10), 3340–3347 (2017)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)MathSciNetMATHCrossRef Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)MathSciNetMATHCrossRef
39.
Zurück zum Zitat Ji, Z.X., Fan, P.R., Zhang, H.G., Wang, H.Z.: Several two-party protocols for quantum private comparison using entanglement and dense coding. Opt. Commun. 459(15), 124911 (2020)CrossRef Ji, Z.X., Fan, P.R., Zhang, H.G., Wang, H.Z.: Several two-party protocols for quantum private comparison using entanglement and dense coding. Opt. Commun. 459(15), 124911 (2020)CrossRef
40.
Zurück zum Zitat Ye, T.Y., Ji, Z.X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56(5), 1517–1529 (2017)MathSciNetMATHCrossRef Ye, T.Y., Ji, Z.X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56(5), 1517–1529 (2017)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)ADSMathSciNetMATHCrossRef Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)ADSMathSciNetMATHCrossRef
42.
Zurück zum Zitat Ji, Z.X., Zhang, H.G., Wang, H.Z.: Quantum private comparison protocols with a number of multi-particle entangled states. IEEE Access 7, 44613–44621 (2019)CrossRef Ji, Z.X., Zhang, H.G., Wang, H.Z.: Quantum private comparison protocols with a number of multi-particle entangled states. IEEE Access 7, 44613–44621 (2019)CrossRef
43.
Zurück zum Zitat Liu, W., Wang, Y.B.: Dynamic multi-party quantum private comparison protocol with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55(12), 5307–5317 (2016)MATHCrossRef Liu, W., Wang, Y.B.: Dynamic multi-party quantum private comparison protocol with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55(12), 5307–5317 (2016)MATHCrossRef
44.
Zurück zum Zitat Ye, C.Q., Ye, T.Y.: Multi-party quantum private comparison of size relation with d-level single-particle states. Quantum Inf. Process. 17(10), 252 (2018)ADSMATHCrossRef Ye, C.Q., Ye, T.Y.: Multi-party quantum private comparison of size relation with d-level single-particle states. Quantum Inf. Process. 17(10), 252 (2018)ADSMATHCrossRef
45.
Zurück zum Zitat Du, G., Zhang, F., Ma, C.G.: A new multi-party quantum private comparison protocol based on circle model. Int. J. Theor. Phys. 58, 3225–3233 (2019)MathSciNetMATHCrossRef Du, G., Zhang, F., Ma, C.G.: A new multi-party quantum private comparison protocol based on circle model. Int. J. Theor. Phys. 58, 3225–3233 (2019)MathSciNetMATHCrossRef
46.
Zurück zum Zitat Song, X.L., Wen, A.J., Gou, R.: Multiparty quantum private comparison of size relation based on single-particle states. IEEE Access 7, 142507–142514 (2019)CrossRef Song, X.L., Wen, A.J., Gou, R.: Multiparty quantum private comparison of size relation based on single-particle states. IEEE Access 7, 142507–142514 (2019)CrossRef
47.
Zurück zum Zitat Abulkasim, H., Alsuqaih, H.N., Hamdan, W.F., Hamad, S., et al.: Improved dynamic multi-party quantum private comparison for next-generation mobile network. IEEE Access 7, 17917–17926 (2019)CrossRef Abulkasim, H., Alsuqaih, H.N., Hamdan, W.F., Hamad, S., et al.: Improved dynamic multi-party quantum private comparison for next-generation mobile network. IEEE Access 7, 17917–17926 (2019)CrossRef
48.
Zurück zum Zitat Liu, W., Wang, Y.B., Wang, X.M.: Quantum multi-party private comparison protocol using d-dimensional Bell states. Int. J. Theor. Phys. 54(6), 1830–1839 (2015)MathSciNetMATHCrossRef Liu, W., Wang, Y.B., Wang, X.M.: Quantum multi-party private comparison protocol using d-dimensional Bell states. Int. J. Theor. Phys. 54(6), 1830–1839 (2015)MathSciNetMATHCrossRef
49.
Zurück zum Zitat Ye, T.Y.: Multi-party quantum private comparison protocol based on entanglement swapping of Bell entangled states. Commun. Theor. Phys. 66(3), 280–290 (2016)ADSMathSciNetMATHCrossRef Ye, T.Y.: Multi-party quantum private comparison protocol based on entanglement swapping of Bell entangled states. Commun. Theor. Phys. 66(3), 280–290 (2016)ADSMathSciNetMATHCrossRef
50.
Zurück zum Zitat Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level Cat states and d-level Bell states. Quantum Inf. Process. 16(7), 177 (2017)ADSMathSciNetMATHCrossRef Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level Cat states and d-level Bell states. Quantum Inf. Process. 16(7), 177 (2017)ADSMathSciNetMATHCrossRef
51.
Zurück zum Zitat Ye, T.Y., Ji, Z.X.: Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states. Sci. China-Phys. Mech. Astron. 60(9), 090312 (2017)ADSCrossRef Ye, T.Y., Ji, Z.X.: Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states. Sci. China-Phys. Mech. Astron. 60(9), 090312 (2017)ADSCrossRef
52.
Zurück zum Zitat Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)ADSMathSciNetMATHCrossRef Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)ADSMathSciNetMATHCrossRef
53.
Zurück zum Zitat Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison protocol with an almost-dishonest third party using GHZ states. Int. J. Theor. Phys. 55(6), 2969–2976 (2016)MATHCrossRef Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison protocol with an almost-dishonest third party using GHZ states. Int. J. Theor. Phys. 55(6), 2969–2976 (2016)MATHCrossRef
54.
Zurück zum Zitat Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf. Process. 14, 4225–4235 (2015)ADSMathSciNetMATHCrossRef Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf. Process. 14, 4225–4235 (2015)ADSMathSciNetMATHCrossRef
55.
Zurück zum Zitat Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)ADSMathSciNetMATHCrossRef Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)ADSMathSciNetMATHCrossRef
56.
Zurück zum Zitat Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13(11), 2375–2389 (2014)ADSMathSciNetMATHCrossRef Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13(11), 2375–2389 (2014)ADSMathSciNetMATHCrossRef
57.
Zurück zum Zitat Luo, Q.B., Yang, G.W., She, K., et al.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13(10), 2343–2352 (2014)ADSMathSciNetMATHCrossRef Luo, Q.B., Yang, G.W., She, K., et al.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13(10), 2343–2352 (2014)ADSMathSciNetMATHCrossRef
58.
Zurück zum Zitat Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)MathSciNetMATHCrossRef Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)MathSciNetMATHCrossRef
59.
Zurück zum Zitat Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)ADSCrossRef Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)ADSCrossRef
61.
Zurück zum Zitat Ambainis, A.: Quantum walk algorithm for element distinctness. In: 45th Annual IEEE Symposium on Foundations of Computer Science, Rome, Italy, pp. 22–31 (2004) Ambainis, A.: Quantum walk algorithm for element distinctness. In: 45th Annual IEEE Symposium on Foundations of Computer Science, Rome, Italy, pp. 22–31 (2004)
62.
63.
Zurück zum Zitat Tamascelli, D., Zanetti, L.: A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems. J. Phys. A-Math. Theor. 47(32), 3025302 (2014)MathSciNetMATHCrossRef Tamascelli, D., Zanetti, L.: A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems. J. Phys. A-Math. Theor. 47(32), 3025302 (2014)MathSciNetMATHCrossRef
64.
Zurück zum Zitat Chakraborty, S., Novo, L., Giorgio, S.D., Omar, Y.: Optimal quantum spatial search on random temporal networks. Phys. Rev. Lett. 119(22), 220503 (2017)ADSCrossRef Chakraborty, S., Novo, L., Giorgio, S.D., Omar, Y.: Optimal quantum spatial search on random temporal networks. Phys. Rev. Lett. 119(22), 220503 (2017)ADSCrossRef
65.
Zurück zum Zitat Yang, Y.G., Yang, J.J., Zhou, Y.H., et al.: Quantum network communication: a discrete-time quantum-walk approach. Sci. China-Inf. Sci. 61(4), 042501 (2018)MathSciNetCrossRef Yang, Y.G., Yang, J.J., Zhou, Y.H., et al.: Quantum network communication: a discrete-time quantum-walk approach. Sci. China-Inf. Sci. 61(4), 042501 (2018)MathSciNetCrossRef
66.
Zurück zum Zitat Kurzyński, P., Wójcik, A.: Quantum walk as a generalized measuring device. Phys. Rev. Lett. 110(20), 200404 (2013)ADSCrossRef Kurzyński, P., Wójcik, A.: Quantum walk as a generalized measuring device. Phys. Rev. Lett. 110(20), 200404 (2013)ADSCrossRef
67.
Zurück zum Zitat Zhan, X., Qin, H., Bian, Z.H., et al.: Perfect state transfer and efficient quantum routing: a discrete-time quantum-walk approach. Phys. Rev. A 90(1), 012331 (2014)ADSCrossRef Zhan, X., Qin, H., Bian, Z.H., et al.: Perfect state transfer and efficient quantum routing: a discrete-time quantum-walk approach. Phys. Rev. A 90(1), 012331 (2014)ADSCrossRef
68.
69.
Zurück zum Zitat Babatunde, A.M., Cresser, J., Twamley, J.: Using a biased quantum random walk as a quantum lumped element router. Phys. Rev. A 90(1), 124–129 (2014)CrossRef Babatunde, A.M., Cresser, J., Twamley, J.: Using a biased quantum random walk as a quantum lumped element router. Phys. Rev. A 90(1), 124–129 (2014)CrossRef
70.
Zurück zum Zitat Vlachou, C., Rodrigues, J., Mateus, P., et al.: Quantum walk public-key cryptographic system. Int. J. Quantum Inf. 13(07), 1550050 (2015)MathSciNetMATHCrossRef Vlachou, C., Rodrigues, J., Mateus, P., et al.: Quantum walk public-key cryptographic system. Int. J. Quantum Inf. 13(07), 1550050 (2015)MathSciNetMATHCrossRef
71.
72.
Zurück zum Zitat Li, H.J., Jian, J., Xiang, N., et al.: A new kind of universal and flexible quantum information splitting scheme with multi-coin quantum walks. Quantum Inf. Process. 18(10), 316 (2019)ADSMathSciNetCrossRef Li, H.J., Jian, J., Xiang, N., et al.: A new kind of universal and flexible quantum information splitting scheme with multi-coin quantum walks. Quantum Inf. Process. 18(10), 316 (2019)ADSMathSciNetCrossRef
74.
Zurück zum Zitat Yang, Y.G., Cao, S.N., Chao, W.F., et al.: Generalized teleportation by means of discrete-time quantum walks on N-lines and N-cycles. Mod. Phys. Lett. B 33(06), 1950070 (2019)ADSMathSciNetCrossRef Yang, Y.G., Cao, S.N., Chao, W.F., et al.: Generalized teleportation by means of discrete-time quantum walks on N-lines and N-cycles. Mod. Phys. Lett. B 33(06), 1950070 (2019)ADSMathSciNetCrossRef
75.
Zurück zum Zitat Gnutzmann, S., Smilansky, U.: Quantum graphs: applications to quantum chaos and universal spectral statistics. Adv. Phys. 55(5–6), 527–625 (2006)ADSCrossRef Gnutzmann, S., Smilansky, U.: Quantum graphs: applications to quantum chaos and universal spectral statistics. Adv. Phys. 55(5–6), 527–625 (2006)ADSCrossRef
76.
Zurück zum Zitat Gao, F., Gao, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “experimental demonstration of a quantum protocol for byzantine agreement and liar detection’’. Phys. Rev. Lett. 101(20), 208901 (2008)ADSCrossRef Gao, F., Gao, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “experimental demonstration of a quantum protocol for byzantine agreement and liar detection’’. Phys. Rev. Lett. 101(20), 208901 (2008)ADSCrossRef
77.
Zurück zum Zitat Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus n-receiver QSDC protocol. Chin. Phys. Lett. 25(5), 1561–1563 (2008)ADSCrossRef Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus n-receiver QSDC protocol. Chin. Phys. Lett. 25(5), 1561–1563 (2008)ADSCrossRef
78.
Zurück zum Zitat Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the brádler-dušek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)MathSciNetMATH Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the brádler-dušek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)MathSciNetMATH
79.
Zurück zum Zitat Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)ADSCrossRef Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)ADSCrossRef
80.
Zurück zum Zitat Li, C.Y., Li, X.H., Deng, F.G., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)ADSCrossRef Li, C.Y., Li, X.H., Deng, F.G., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)ADSCrossRef
81.
Zurück zum Zitat Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24(1), 19 (2007)ADSCrossRef Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24(1), 19 (2007)ADSCrossRef
82.
Zurück zum Zitat Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(04), 040305 (2013)ADSCrossRef Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(04), 040305 (2013)ADSCrossRef
83.
Zurück zum Zitat Gao, G., Wang, L.P.: A protocol for bidirectional quantum secure communication based on genuine four-particle entangled states. Commun. Theor. Phys. 54(3), 447–451 (2010)ADSMathSciNetMATHCrossRef Gao, G., Wang, L.P.: A protocol for bidirectional quantum secure communication based on genuine four-particle entangled states. Commun. Theor. Phys. 54(3), 447–451 (2010)ADSMathSciNetMATHCrossRef
84.
Zurück zum Zitat Xiu, X.M., Dong, H.K., Dong, L., et al.: Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt. Commun. 282(12), 2457–2459 (2009)ADSCrossRef Xiu, X.M., Dong, H.K., Dong, L., et al.: Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt. Commun. 282(12), 2457–2459 (2009)ADSCrossRef
Metadaten
Titel
Novel two-party quantum private comparison via quantum walks on circle
verfasst von
Feng-Lin Chen
Hai Zhang
Su-Gen Chen
Wen-Tao Cheng
Publikationsdatum
01.05.2021
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 5/2021
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03084-2

Weitere Artikel der Ausgabe 5/2021

Quantum Information Processing 5/2021 Zur Ausgabe

Neuer Inhalt