Skip to main content

09.07.2024 | Engine and Emissions, Fuels and Lubricants

NOX Emission Prediction of Diesel Engine Based on GWO-LSTM

verfasst von: Biwei Lu, Jiehui Li

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Diesel engine NOx is the main harmful emission of motor vehicles. Accurate measurement of NOx emission is beneficial to the control of SCR (selective catalytic reduction) urea injection so as to reduce emissions. At present, NOx emission value is mainly obtained by NOx sensor or MAP calibration and these two methods have limitations in practical applications. In this study, PCA (principal component analysis) is used to reduce the dimension of diesel engine operating data of WHTC (the world harmonized transient cycle) bench test, which can make data visualized in three-dimensional space. Then transient diesel engine NOx prediction model is built based on LSTM, and GWO (grey wolf optimizer) is used to optimize the parameters of LSTM. The results showed that R2 (determination coefficients) of the GWO-LSTM is 0.987; In the untrained data set, MAE (mean absolute error), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 18.75 × 10–6, 3.23% and 20.29 × 10–6, respectively. The same accuracy index are be compared with PSO-BP and static map. It is proved that the GWO-LSTM model can accurately predict the transient NOx emission of diesel engine, and also has good generalization ability with reliability, which provides a reference for software instead of hardware to control diesel engine emission.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Alcan, G., Unel, M., Aran, V., et al. (2019). Predicting NOx emissions in diesel engines via sigmoid NARX models using a new experiment design for combustion identification. Measurement, 137, 71–81.CrossRef Alcan, G., Unel, M., Aran, V., et al. (2019). Predicting NOx emissions in diesel engines via sigmoid NARX models using a new experiment design for combustion identification. Measurement, 137, 71–81.CrossRef
Zurück zum Zitat China Mobile Source Environmental Management Annual Report. (2022). Extract 1. Environmental Protection, 50(23), 64–72. China Mobile Source Environmental Management Annual Report. (2022). Extract 1. Environmental Protection, 50(23), 64–72.
Zurück zum Zitat Choudhary, A. K., Chelladurai, H., & Panchal, H. (2022). Optimization and prediction of engine block vibration using micro-electro-mechanical systems capacitive accelerometer, fueled with diesel-bioethanol (water-hyacinth) blends by response surface methodology and artificial neural network. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(9), 4631–4647. Choudhary, A. K., Chelladurai, H., & Panchal, H. (2022). Optimization and prediction of engine block vibration using micro-electro-mechanical systems capacitive accelerometer, fueled with diesel-bioethanol (water-hyacinth) blends by response surface methodology and artificial neural network. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(9), 4631–4647.
Zurück zum Zitat Dai, J., Pang, H., Yu, Y., et al. (2020). Prediction of diesel engine NOx emissions based on long-short term memory neural network. Transactions of Csice, 38, 457–463. Dai, J., Pang, H., Yu, Y., et al. (2020). Prediction of diesel engine NOx emissions based on long-short term memory neural network. Transactions of Csice, 38, 457–463.
Zurück zum Zitat Dharmalingam, B., Annamalai, S., Areeya, S., et al. (2023). Bayesian regularization neural network-based machine learning approach on optimization of CRDI-split injection with waste cooking oil biodiesel to improve diesel engine performance. Energies, 16(6), 2805.CrossRef Dharmalingam, B., Annamalai, S., Areeya, S., et al. (2023). Bayesian regularization neural network-based machine learning approach on optimization of CRDI-split injection with waste cooking oil biodiesel to improve diesel engine performance. Energies, 16(6), 2805.CrossRef
Zurück zum Zitat Domínguez-Sáez, A., Rattá, G. A., & Barrios, C. C. (2018). Prediction of exhaust emission in transient conditions of a diesel engine fueled with animal fat using artificial neural network and symbolic regression. Energy, 149, 675–683.CrossRef Domínguez-Sáez, A., Rattá, G. A., & Barrios, C. C. (2018). Prediction of exhaust emission in transient conditions of a diesel engine fueled with animal fat using artificial neural network and symbolic regression. Energy, 149, 675–683.CrossRef
Zurück zum Zitat Fang, X. H., Zhong, F., Papaioannou, N., et al. (2022). Artificial neural network (ANN) assisted prediction of transient NOx emissions from a high-speed direct injection (HSDI) diesel engine. International Journal of Engine Research, 23(7), 1201–1212.CrossRef Fang, X. H., Zhong, F., Papaioannou, N., et al. (2022). Artificial neural network (ANN) assisted prediction of transient NOx emissions from a high-speed direct injection (HSDI) diesel engine. International Journal of Engine Research, 23(7), 1201–1212.CrossRef
Zurück zum Zitat Hu, F., Zhu, Y., Liu, J., et al. (2020). An efficient long short-term memory model based on Laplacian Eigenmap in artificial neural networks. Applied Soft Computing, 91, 106218.CrossRef Hu, F., Zhu, Y., Liu, J., et al. (2020). An efficient long short-term memory model based on Laplacian Eigenmap in artificial neural networks. Applied Soft Computing, 91, 106218.CrossRef
Zurück zum Zitat Iqbal, M. Y., Wang, T., Li, G., et al. (2022). Development and validation of a vibration-based virtual sensor for real-time monitoring NOx emissions of a diesel engine. Machines, 10(7), 594.CrossRef Iqbal, M. Y., Wang, T., Li, G., et al. (2022). Development and validation of a vibration-based virtual sensor for real-time monitoring NOx emissions of a diesel engine. Machines, 10(7), 594.CrossRef
Zurück zum Zitat Lee, J., Kwon, S., Kim, H., et al. (2021). Machine learning applied to the NOx prediction of diesel vehicle under real driving cycle. Applied Sciences, 11(9), 3758.CrossRef Lee, J., Kwon, S., Kim, H., et al. (2021). Machine learning applied to the NOx prediction of diesel vehicle under real driving cycle. Applied Sciences, 11(9), 3758.CrossRef
Zurück zum Zitat Li, J., Yu, Y., Wang, Y., et al. (2021). Prediction of transient NOx emission from diesel vehicles based on, deep-learning differentiation model with double noise reduction. Atmosphere, 12(12), 1702.CrossRef Li, J., Yu, Y., Wang, Y., et al. (2021). Prediction of transient NOx emission from diesel vehicles based on, deep-learning differentiation model with double noise reduction. Atmosphere, 12(12), 1702.CrossRef
Zurück zum Zitat Lundberg, B., Sjöblom, J., Johansson, Å., et al. (2015). Model-based experimental screening for DOC parameter estimation. Computers & Chemical Engineering, 74, 144–157.CrossRef Lundberg, B., Sjöblom, J., Johansson, Å., et al. (2015). Model-based experimental screening for DOC parameter estimation. Computers & Chemical Engineering, 74, 144–157.CrossRef
Zurück zum Zitat Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef
Zurück zum Zitat Mohammad, A., Rezaei, R., Hayduk, C., et al. (2023). Physical-oriented and machine learning-based emission modeling in a diesel compression ignition engine: Dimensionality reduction and regression. International Journal of Engine Research, 24(3), 904–918.CrossRef Mohammad, A., Rezaei, R., Hayduk, C., et al. (2023). Physical-oriented and machine learning-based emission modeling in a diesel compression ignition engine: Dimensionality reduction and regression. International Journal of Engine Research, 24(3), 904–918.CrossRef
Zurück zum Zitat Niu, X., Yang, C., Wang, H., et al. (2017). Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine. Applied Thermal Engineering, 111, 1353–1364.CrossRef Niu, X., Yang, C., Wang, H., et al. (2017). Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine. Applied Thermal Engineering, 111, 1353–1364.CrossRef
Zurück zum Zitat Park, J. J., Lee, S., Shin, S., et al. (2023). Development of a light and accurate NOx prediction model for diesel engines using machine learning and Xai methods. International Journal of Automotive Technology, 24(2), 559–571.CrossRef Park, J. J., Lee, S., Shin, S., et al. (2023). Development of a light and accurate NOx prediction model for diesel engines using machine learning and Xai methods. International Journal of Automotive Technology, 24(2), 559–571.CrossRef
Zurück zum Zitat Scappin, F., Stefansson, S. H., Haglind, F., et al. (2014). Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines. Applied Thermal Engineering, 37, 344–352.CrossRef Scappin, F., Stefansson, S. H., Haglind, F., et al. (2014). Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines. Applied Thermal Engineering, 37, 344–352.CrossRef
Zurück zum Zitat Shin, S., Lee, Y., Kim, M., et al. (2020). Deep neural network model with Bayesian hyperparameter optimization for prediction of NOx at transient conditions in a diesel engine. Engineering Applications of Artificial Intelligence, 94, 103761.CrossRef Shin, S., Lee, Y., Kim, M., et al. (2020). Deep neural network model with Bayesian hyperparameter optimization for prediction of NOx at transient conditions in a diesel engine. Engineering Applications of Artificial Intelligence, 94, 103761.CrossRef
Zurück zum Zitat Wang, G. Y., Awad, O. I., Liu, S. Y., et al. (2020). NOx emissions prediction based on mutual information and back propagation neural network using correlation quantitative analysis. Energy, 198, 117286.CrossRef Wang, G. Y., Awad, O. I., Liu, S. Y., et al. (2020). NOx emissions prediction based on mutual information and back propagation neural network using correlation quantitative analysis. Energy, 198, 117286.CrossRef
Zurück zum Zitat Wang, T., Huang, Z., Luo, X., et al. (2022). Model-based NH3 adaptation method for SCR control. International Journal of Automotive Technology, 23(6), 1621–1637.CrossRef Wang, T., Huang, Z., Luo, X., et al. (2022). Model-based NH3 adaptation method for SCR control. International Journal of Automotive Technology, 23(6), 1621–1637.CrossRef
Zurück zum Zitat Wang, Y., Wang, G., Yao, G., et al. (2023). Investigation of RBFNN based on improved PSO optimization algorithm for performance and emissions prediction of a high-pressure common-rail diesel engine. Advanced Theory and Simulations, 6, 2200656.CrossRef Wang, Y., Wang, G., Yao, G., et al. (2023). Investigation of RBFNN based on improved PSO optimization algorithm for performance and emissions prediction of a high-pressure common-rail diesel engine. Advanced Theory and Simulations, 6, 2200656.CrossRef
Zurück zum Zitat Wardana, M. K. A., Hyun, J., & Lim, O. (2019). A study of urea injection timing to predict the NOx conversion in SCR systems. Energy Procedia, 158, 1942–1948.CrossRef Wardana, M. K. A., Hyun, J., & Lim, O. (2019). A study of urea injection timing to predict the NOx conversion in SCR systems. Energy Procedia, 158, 1942–1948.CrossRef
Zurück zum Zitat Wardana, M. K. A., Oh, K., Lee, Y. J., et al. (2020). Effects of urea injection timing on predicting NOx conversion in SCR systems. International Journal of Automotive Technology, 21, 137–145.CrossRef Wardana, M. K. A., Oh, K., Lee, Y. J., et al. (2020). Effects of urea injection timing on predicting NOx conversion in SCR systems. International Journal of Automotive Technology, 21, 137–145.CrossRef
Zurück zum Zitat Wei, N., Zhang, Q., Zhang, Y., et al. (2022). Super-learner model realizes the transient prediction of CO2 and NOx of diesel trucks: Model development, evaluation and interpretation. Environment International, 158, 106977.CrossRef Wei, N., Zhang, Q., Zhang, Y., et al. (2022). Super-learner model realizes the transient prediction of CO2 and NOx of diesel trucks: Model development, evaluation and interpretation. Environment International, 158, 106977.CrossRef
Zurück zum Zitat Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2), 265–286.MathSciNetCrossRef Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2), 265–286.MathSciNetCrossRef
Metadaten
Titel
NOX Emission Prediction of Diesel Engine Based on GWO-LSTM
verfasst von
Biwei Lu
Jiehui Li
Publikationsdatum
09.07.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00068-w