Skip to main content
Erschienen in: Acta Mechanica Sinica 2/2019

22.02.2019 | Review Paper

Nuclear mechanics during and after constricted migration

verfasst von: Yuntao Xia, Charlotte R. Pfeifer, Dennis E. Discher

Erschienen in: Acta Mechanica Sinica | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cell migration through very narrow spaces in tissues has been seen in both physiological and pathological contexts. For example, immune cells squeeze through the vasculature and the extracellular matrix to reach wound or disease sites, and similarly, cancer cells crawl through interstices in tissues to invade tumor-free regions. The bulky and stiff nucleus of a cell is a barrier to such constricted migration—with smaller pores exponentially more difficult for passage. Cells must actively deform their nuclei to squeeze through constrictions, and this involves the stress-generating cytoskeleton. Here we review: (1) nuclear structures and morphological regulation, (2) proposed mechanisms that drive constricted migration, (3) short-term consequences such as nuclear envelope (NE) rupture and DNA damage during such process, (4) biophysical factors that facilitate NE rupture, and (5) long-term consequences such as genomic variation caused by repetitive NE rupture. Both experimental results and modeling are provided with the intention to better understand constricted migration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rustad, K.C., Gurtner, G.C.: Mesenchymal stem cells home to sites of injury and inflammation. Adv. Wound Care (New Rochelle) 1, 147–152 (2012)CrossRef Rustad, K.C., Gurtner, G.C.: Mesenchymal stem cells home to sites of injury and inflammation. Adv. Wound Care (New Rochelle) 1, 147–152 (2012)CrossRef
2.
Zurück zum Zitat Luster, A.D., Alon, R., von Andrian, U.H.: Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005)CrossRef Luster, A.D., Alon, R., von Andrian, U.H.: Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005)CrossRef
3.
Zurück zum Zitat Clark, A.G., Vignjevic, D.M.: Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 36, 13–22 (2015)CrossRef Clark, A.G., Vignjevic, D.M.: Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 36, 13–22 (2015)CrossRef
4.
Zurück zum Zitat Denais, C.M., Gilbert, R.M., Isermann, P., et al.: Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016)CrossRef Denais, C.M., Gilbert, R.M., Isermann, P., et al.: Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016)CrossRef
5.
Zurück zum Zitat Raab, M., Gentili, M., de Belly, H., et al.: ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016)CrossRef Raab, M., Gentili, M., de Belly, H., et al.: ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016)CrossRef
6.
Zurück zum Zitat Harada, T., Swift, J., Irianto, J., et al.: Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204, 669–682 (2014)CrossRef Harada, T., Swift, J., Irianto, J., et al.: Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204, 669–682 (2014)CrossRef
7.
Zurück zum Zitat Irianto, J., Pfeifer, C.R., Ivanovska, I.L., et al.: Nuclear lamins in cancer. Cell. Mol. Bioeng. 9, 258–267 (2016)CrossRef Irianto, J., Pfeifer, C.R., Ivanovska, I.L., et al.: Nuclear lamins in cancer. Cell. Mol. Bioeng. 9, 258–267 (2016)CrossRef
8.
Zurück zum Zitat Swift, J., Ivanovska, I.L., Buxboim, A., et al.: Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013)CrossRef Swift, J., Ivanovska, I.L., Buxboim, A., et al.: Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013)CrossRef
9.
Zurück zum Zitat Yates, L.R., Knappskog, S., Wedge, D., et al.: Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184 (2017)CrossRef Yates, L.R., Knappskog, S., Wedge, D., et al.: Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184 (2017)CrossRef
10.
Zurück zum Zitat Pfeifer, C.R., Alvey, C.M., Irianto, J., et al.: Genome variation across cancers scales with tissue stiffness—an invasion-mutation mechanism and implications for immune cell infiltration. Curr. Opin. Syst. Biol. 2, 103–114 (2017)CrossRef Pfeifer, C.R., Alvey, C.M., Irianto, J., et al.: Genome variation across cancers scales with tissue stiffness—an invasion-mutation mechanism and implications for immune cell infiltration. Curr. Opin. Syst. Biol. 2, 103–114 (2017)CrossRef
11.
Zurück zum Zitat Tomasetti, C., Vogelstein, B.: Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015)CrossRef Tomasetti, C., Vogelstein, B.: Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015)CrossRef
12.
Zurück zum Zitat Alshareeda, A.T., Negm, O.H., Aleskandarany, M.A., et al.: Clinical and biological significance of RAD51 expression in breast cancer: a key DNA damage response protein. Breast Cancer Res. Treat. 159, 41–53 (2016)CrossRef Alshareeda, A.T., Negm, O.H., Aleskandarany, M.A., et al.: Clinical and biological significance of RAD51 expression in breast cancer: a key DNA damage response protein. Breast Cancer Res. Treat. 159, 41–53 (2016)CrossRef
13.
Zurück zum Zitat Irianto, J., Pfeifer, C.R., Xia, Y., et al.: Constricted cell migration causes nuclear lamina damage, DNA breaks, and squeeze-out of repair factors. BioRxiv 035626 (2015) Irianto, J., Pfeifer, C.R., Xia, Y., et al.: Constricted cell migration causes nuclear lamina damage, DNA breaks, and squeeze-out of repair factors. BioRxiv 035626 (2015)
14.
Zurück zum Zitat Burke, B., Roux, K.J.: Nuclei take a position: managing nuclear location. Dev. Cell 17, 587–597 (2009)CrossRef Burke, B., Roux, K.J.: Nuclei take a position: managing nuclear location. Dev. Cell 17, 587–597 (2009)CrossRef
15.
Zurück zum Zitat Edens, L.J., White, K.H., Jevtic, P., et al.: Nuclear size regulation: from single cells to development and disease. Trends Cell Biol. 23, 151–159 (2013)CrossRef Edens, L.J., White, K.H., Jevtic, P., et al.: Nuclear size regulation: from single cells to development and disease. Trends Cell Biol. 23, 151–159 (2013)CrossRef
16.
Zurück zum Zitat Liotta, L.A., Steeg, P.S., Stetler-Stevenson, W.G.: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336 (1991)CrossRef Liotta, L.A., Steeg, P.S., Stetler-Stevenson, W.G.: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336 (1991)CrossRef
17.
Zurück zum Zitat Li, Y., Lovett, D., Zhang, Q., et al.: Moving cell boundaries drive nuclear shaping during cell spreading. Biophys. J. 109, 670–686 (2015)CrossRef Li, Y., Lovett, D., Zhang, Q., et al.: Moving cell boundaries drive nuclear shaping during cell spreading. Biophys. J. 109, 670–686 (2015)CrossRef
18.
Zurück zum Zitat Webster, M., Witkin, K.L., Cohen-Fix, O.: Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J. Cell Sci. 122, 1477–1486 (2009)CrossRef Webster, M., Witkin, K.L., Cohen-Fix, O.: Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J. Cell Sci. 122, 1477–1486 (2009)CrossRef
19.
Zurück zum Zitat Alam, S., Lovett, D.B., Dickinson, R.B., et al.: Nuclear forces and cell mechanosensing. Prog. Mol. Biol. Transl. Sci. 126, 205–215 (2014)CrossRef Alam, S., Lovett, D.B., Dickinson, R.B., et al.: Nuclear forces and cell mechanosensing. Prog. Mol. Biol. Transl. Sci. 126, 205–215 (2014)CrossRef
20.
Zurück zum Zitat Cho, S., Irianto, J., Discher, D.E.: Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216, 305–315 (2017)CrossRef Cho, S., Irianto, J., Discher, D.E.: Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216, 305–315 (2017)CrossRef
21.
Zurück zum Zitat Guilluy, C., Burridge, K.: Nuclear mechanotransduction: forcing the nucleus to respond. Nucleus 6, 19–22 (2015)CrossRef Guilluy, C., Burridge, K.: Nuclear mechanotransduction: forcing the nucleus to respond. Nucleus 6, 19–22 (2015)CrossRef
22.
Zurück zum Zitat Chin, L., Xia, Y., Discher, D.E., et al.: Mechanotransduction in cancer. Curr. Opin. Chem. Eng. 11, 77–84 (2016)CrossRef Chin, L., Xia, Y., Discher, D.E., et al.: Mechanotransduction in cancer. Curr. Opin. Chem. Eng. 11, 77–84 (2016)CrossRef
23.
Zurück zum Zitat Lee, Y.L., Burke, B.: LINC complexes and nuclear positioning. Semin. Cell Dev. Biol. 82, 67–76 (2018)CrossRef Lee, Y.L., Burke, B.: LINC complexes and nuclear positioning. Semin. Cell Dev. Biol. 82, 67–76 (2018)CrossRef
24.
Zurück zum Zitat Mazumder, A., Shivashankar, G.V.: Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development. J. R. Soc. Interface 7, S321–S330 (2010)CrossRef Mazumder, A., Shivashankar, G.V.: Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development. J. R. Soc. Interface 7, S321–S330 (2010)CrossRef
25.
Zurück zum Zitat Nagayama, K., Yahiro, Y., Matsumoto, T.: Stress fibers stabilize the position of intranuclear DNA through mechanical connection with the nucleus in vascular smooth muscle cells. FEBS Lett. 585, 3992–3997 (2011)CrossRef Nagayama, K., Yahiro, Y., Matsumoto, T.: Stress fibers stabilize the position of intranuclear DNA through mechanical connection with the nucleus in vascular smooth muscle cells. FEBS Lett. 585, 3992–3997 (2011)CrossRef
26.
Zurück zum Zitat Tapley, E.C., Starr, D.A.: Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Curr. Opin. Cell Biol. 25, 57–62 (2013)CrossRef Tapley, E.C., Starr, D.A.: Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Curr. Opin. Cell Biol. 25, 57–62 (2013)CrossRef
27.
Zurück zum Zitat Arsenovic, P.T., Ramachandran, I., Bathula, K., et al.: Nesprin-2G, a component of the nuclear LINC complex, is subject to myosin-dependent tension. Biophys. J. 110, 34–43 (2016)CrossRef Arsenovic, P.T., Ramachandran, I., Bathula, K., et al.: Nesprin-2G, a component of the nuclear LINC complex, is subject to myosin-dependent tension. Biophys. J. 110, 34–43 (2016)CrossRef
28.
Zurück zum Zitat Graumann, K., Vanrobays, E., Tutois, S., et al.: Characterization of two distinct subfamilies of SUN-domain proteins in Arabidopsis and their interactions with the novel KASH-domain protein AtTIK. J. Exp. Bot. 65, 6499–6512 (2014)CrossRef Graumann, K., Vanrobays, E., Tutois, S., et al.: Characterization of two distinct subfamilies of SUN-domain proteins in Arabidopsis and their interactions with the novel KASH-domain protein AtTIK. J. Exp. Bot. 65, 6499–6512 (2014)CrossRef
29.
Zurück zum Zitat Kim, J.K., Louhghalam, A., Lee, G., et al.: Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat. Commun. 8, 2123 (2017)CrossRef Kim, J.K., Louhghalam, A., Lee, G., et al.: Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat. Commun. 8, 2123 (2017)CrossRef
30.
Zurück zum Zitat Ramdas, N.M., Shivashankar, G.V.: Cytoskeletal control of nuclear morphology and chromatin organization. J. Mol. Biol. 427, 695–706 (2015)CrossRef Ramdas, N.M., Shivashankar, G.V.: Cytoskeletal control of nuclear morphology and chromatin organization. J. Mol. Biol. 427, 695–706 (2015)CrossRef
31.
Zurück zum Zitat Uhler, C., Shivashankar, G.V.: Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat. Rev. Mol. Cell Biol. 18, 717–727 (2017)CrossRef Uhler, C., Shivashankar, G.V.: Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat. Rev. Mol. Cell Biol. 18, 717–727 (2017)CrossRef
32.
Zurück zum Zitat Turgay, Y., Eibauer, M., Goldman, A.E., et al.: The molecular architecture of lamins in somatic cells. Nature 543, 261–264 (2017)CrossRef Turgay, Y., Eibauer, M., Goldman, A.E., et al.: The molecular architecture of lamins in somatic cells. Nature 543, 261–264 (2017)CrossRef
33.
Zurück zum Zitat Belaadi, N., Aureille, J., Guilluy, C.: Under pressure: mechanical stress management in the nucleus. Cells 5, 27 (2016)CrossRef Belaadi, N., Aureille, J., Guilluy, C.: Under pressure: mechanical stress management in the nucleus. Cells 5, 27 (2016)CrossRef
34.
Zurück zum Zitat Dechat, T., Adam, S.A., Taimen, P., et al.: Nuclear lamins. Cold Spring Harb. Perspect. Biol. 2, a000547 (2010)CrossRef Dechat, T., Adam, S.A., Taimen, P., et al.: Nuclear lamins. Cold Spring Harb. Perspect. Biol. 2, a000547 (2010)CrossRef
35.
Zurück zum Zitat Jung, H.J., Nobumori, C., Goulbourne, C.N., et al.: Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proc. Natl. Acad. Sci. U.S.A. 110, E1923–E1932 (2013)CrossRef Jung, H.J., Nobumori, C., Goulbourne, C.N., et al.: Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proc. Natl. Acad. Sci. U.S.A. 110, E1923–E1932 (2013)CrossRef
36.
Zurück zum Zitat Goldman, R.D., Gruenbaum, Y., Moir, R.D., et al.: Nuclear lamins: building blocks of nuclear architecture. Genes Dev. 16, 533–547 (2002)CrossRef Goldman, R.D., Gruenbaum, Y., Moir, R.D., et al.: Nuclear lamins: building blocks of nuclear architecture. Genes Dev. 16, 533–547 (2002)CrossRef
37.
Zurück zum Zitat Gilchrist, S., Gilbert, N., Perry, P., et al.: Altered protein dynamics of disease-associated lamin A mutants. BMC Cell Biol. 5, 46 (2004)CrossRef Gilchrist, S., Gilbert, N., Perry, P., et al.: Altered protein dynamics of disease-associated lamin A mutants. BMC Cell Biol. 5, 46 (2004)CrossRef
38.
Zurück zum Zitat Moir, R.D., Yoon, M., Khuon, S., et al.: Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J. Cell Biol. 151, 1155–1168 (2000)CrossRef Moir, R.D., Yoon, M., Khuon, S., et al.: Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J. Cell Biol. 151, 1155–1168 (2000)CrossRef
39.
Zurück zum Zitat Buxboim, A., Swift, J., Irianto, J., et al.: Matrix elasticity regulates lamin-A, C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24, 1909–1917 (2014)CrossRef Buxboim, A., Swift, J., Irianto, J., et al.: Matrix elasticity regulates lamin-A, C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24, 1909–1917 (2014)CrossRef
40.
Zurück zum Zitat Dingal, P.C., Discher, D.E.: Systems mechanobiology: tension-inhibited protein turnover is sufficient to physically control gene circuits. Biophys. J. 107, 2734–2743 (2014)CrossRef Dingal, P.C., Discher, D.E.: Systems mechanobiology: tension-inhibited protein turnover is sufficient to physically control gene circuits. Biophys. J. 107, 2734–2743 (2014)CrossRef
41.
Zurück zum Zitat Vigouroux, C., Auclair, M., Dubosclard, E., et al.: Nuclear envelope disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C gene. J. Cell Sci. 114, 4459–4468 (2001) Vigouroux, C., Auclair, M., Dubosclard, E., et al.: Nuclear envelope disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C gene. J. Cell Sci. 114, 4459–4468 (2001)
42.
Zurück zum Zitat Muchir, A., Medioni, J., Laluc, M., et al.: Nuclear envelope alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy, and partial lipodystrophy carrying lamin A/C gene mutations. Muscle Nerve 30, 444–450 (2004)CrossRef Muchir, A., Medioni, J., Laluc, M., et al.: Nuclear envelope alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy, and partial lipodystrophy carrying lamin A/C gene mutations. Muscle Nerve 30, 444–450 (2004)CrossRef
43.
Zurück zum Zitat Cho, S., Abbas, A., Irianto, J., et al.: Progerin phosphorylation in interphase is lower and less mechanosensitive than lamin-A, C in iPS-derived mesenchymal stem cells. Nucleus 9, 230–245 (2018)CrossRef Cho, S., Abbas, A., Irianto, J., et al.: Progerin phosphorylation in interphase is lower and less mechanosensitive than lamin-A, C in iPS-derived mesenchymal stem cells. Nucleus 9, 230–245 (2018)CrossRef
44.
Zurück zum Zitat Vicente-Manzanares, M., Ma, X., Adelstein, R.S., et al.: Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10, 778–790 (2009)CrossRef Vicente-Manzanares, M., Ma, X., Adelstein, R.S., et al.: Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10, 778–790 (2009)CrossRef
45.
Zurück zum Zitat Khatau, S.B., Hale, C.M., Stewart-Hutchinson, P.J., et al.: A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. U.S.A. 106, 19017–19022 (2009)CrossRef Khatau, S.B., Hale, C.M., Stewart-Hutchinson, P.J., et al.: A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. U.S.A. 106, 19017–19022 (2009)CrossRef
46.
Zurück zum Zitat Pajerowski, J.D., Dahl, K.N., Zhong, F.L., et al.: Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl. Acad. Sci. U.S.A. 104, 15619–15624 (2007)CrossRef Pajerowski, J.D., Dahl, K.N., Zhong, F.L., et al.: Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl. Acad. Sci. U.S.A. 104, 15619–15624 (2007)CrossRef
47.
Zurück zum Zitat Lammerding, J., Fong, L.G., Ji, J.Y., et al.: Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281, 25768–25780 (2006)CrossRef Lammerding, J., Fong, L.G., Ji, J.Y., et al.: Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281, 25768–25780 (2006)CrossRef
48.
Zurück zum Zitat Vicente-Manzanares, M., Webb, D.J., Horwitz, A.R.: Cell migration at a glance. J. Cell Sci. 118, 4917–4919 (2005)CrossRef Vicente-Manzanares, M., Webb, D.J., Horwitz, A.R.: Cell migration at a glance. J. Cell Sci. 118, 4917–4919 (2005)CrossRef
49.
Zurück zum Zitat Ridley, A.J., Schwartz, M.A., Burridge, K., et al.: Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003)CrossRef Ridley, A.J., Schwartz, M.A., Burridge, K., et al.: Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003)CrossRef
50.
Zurück zum Zitat Etienne-Manneville, S.: Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29, 471–499 (2013)CrossRef Etienne-Manneville, S.: Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29, 471–499 (2013)CrossRef
51.
Zurück zum Zitat Ganguly, A., Yang, H., Sharma, R., et al.: The role of microtubules and their dynamics in cell migration. J. Biol. Chem. 287, 43359–43369 (2012)CrossRef Ganguly, A., Yang, H., Sharma, R., et al.: The role of microtubules and their dynamics in cell migration. J. Biol. Chem. 287, 43359–43369 (2012)CrossRef
52.
Zurück zum Zitat Yamaguchi, H., Condeelis, J.: Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 1773, 642–652 (2007)CrossRef Yamaguchi, H., Condeelis, J.: Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 1773, 642–652 (2007)CrossRef
53.
Zurück zum Zitat Mogilner, A., Oster, G.: Cell motility driven by actin polymerization. Biophys. J. 71, 3030–3045 (1996)CrossRef Mogilner, A., Oster, G.: Cell motility driven by actin polymerization. Biophys. J. 71, 3030–3045 (1996)CrossRef
54.
Zurück zum Zitat Pasapera, A.M., Schneider, I.C., Rericha, E., et al.: Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877–890 (2010)CrossRef Pasapera, A.M., Schneider, I.C., Rericha, E., et al.: Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877–890 (2010)CrossRef
55.
Zurück zum Zitat Jorrisch, M.H., Shih, W., Yamada, S.: Myosin IIA deficient cells migrate efficiently despite reduced traction forces at cell periphery. Biol. Open 2, 368–372 (2013)CrossRef Jorrisch, M.H., Shih, W., Yamada, S.: Myosin IIA deficient cells migrate efficiently despite reduced traction forces at cell periphery. Biol. Open 2, 368–372 (2013)CrossRef
56.
Zurück zum Zitat Doyle, A.D., Kutys, M.L., Conti, M.A., et al.: Micro-environmental control of cell migration—myosin IIA is required for efficient migration in fibrillar environments through control of cell adhesion dynamics. J. Cell Sci. 125, 2244–2256 (2012)CrossRef Doyle, A.D., Kutys, M.L., Conti, M.A., et al.: Micro-environmental control of cell migration—myosin IIA is required for efficient migration in fibrillar environments through control of cell adhesion dynamics. J. Cell Sci. 125, 2244–2256 (2012)CrossRef
57.
Zurück zum Zitat Friedl, P., Zanker, K.S., Brocker, E.B.: Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Tech. 43, 369–378 (1998)CrossRef Friedl, P., Zanker, K.S., Brocker, E.B.: Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Tech. 43, 369–378 (1998)CrossRef
58.
Zurück zum Zitat Beach, J.R., Shao, L., Remmert, K., et al.: Nonmuscle myosin II isoforms coassemble in living cells. Curr. Biol. 24, 1160–1166 (2014)CrossRef Beach, J.R., Shao, L., Remmert, K., et al.: Nonmuscle myosin II isoforms coassemble in living cells. Curr. Biol. 24, 1160–1166 (2014)CrossRef
59.
Zurück zum Zitat Vicente-Manzanares, M., Zareno, J., Whitmore, L., et al.: Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J. Cell Biol. 176, 573–580 (2007)CrossRef Vicente-Manzanares, M., Zareno, J., Whitmore, L., et al.: Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J. Cell Biol. 176, 573–580 (2007)CrossRef
60.
Zurück zum Zitat Chang, W., Folker, E.S., Worman, H.J., et al.: Emerin organizes actin flow for nuclear movement and centrosome orientation in migrating fibroblasts. Mol. Biol. Cell 24, 3869–3880 (2013)CrossRef Chang, W., Folker, E.S., Worman, H.J., et al.: Emerin organizes actin flow for nuclear movement and centrosome orientation in migrating fibroblasts. Mol. Biol. Cell 24, 3869–3880 (2013)CrossRef
61.
Zurück zum Zitat Raab, M., Swift, J., Dingal, P.C., et al.: Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J. Cell Biol. 199, 669–683 (2012)CrossRef Raab, M., Swift, J., Dingal, P.C., et al.: Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J. Cell Biol. 199, 669–683 (2012)CrossRef
62.
Zurück zum Zitat Irianto, J., Pfeifer, C.R., Xia, Y., et al.: Snapshot: mechanosensing matrix. Cell 165, 1820 (2016)CrossRef Irianto, J., Pfeifer, C.R., Xia, Y., et al.: Snapshot: mechanosensing matrix. Cell 165, 1820 (2016)CrossRef
63.
Zurück zum Zitat Irianto, J., Pfeifer, C.R., Bennett, R.R., et al.: Nuclear constriction segregates mobile nuclear proteins away from chromatin. Mol. Biol. Cell 27, 4011–4020 (2016)CrossRef Irianto, J., Pfeifer, C.R., Bennett, R.R., et al.: Nuclear constriction segregates mobile nuclear proteins away from chromatin. Mol. Biol. Cell 27, 4011–4020 (2016)CrossRef
64.
Zurück zum Zitat Cao, X., Moeendarbary, E., Isermann, P., et al.: A chemomechanical model for nuclear morphology and stresses during cell transendothelial migration. Biophys. J. 111, 1541–1552 (2016)CrossRef Cao, X., Moeendarbary, E., Isermann, P., et al.: A chemomechanical model for nuclear morphology and stresses during cell transendothelial migration. Biophys. J. 111, 1541–1552 (2016)CrossRef
65.
Zurück zum Zitat Shenoy, V.B., Wang, H., Wang, X.: A chemo-mechanical free-energy-based approach to model durotaxis and extracellular stiffness-dependent contraction and polarization of cells. Interface Focus 6, 20150067 (2016)CrossRef Shenoy, V.B., Wang, H., Wang, X.: A chemo-mechanical free-energy-based approach to model durotaxis and extracellular stiffness-dependent contraction and polarization of cells. Interface Focus 6, 20150067 (2016)CrossRef
66.
Zurück zum Zitat Zhang, X., Xu, R., Zhu, B., et al.: Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134, 901–908 (2007)CrossRef Zhang, X., Xu, R., Zhu, B., et al.: Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134, 901–908 (2007)CrossRef
67.
Zurück zum Zitat Lammermann, T., Bader, B.L., Monkley, S.J., et al.: Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008)CrossRef Lammermann, T., Bader, B.L., Monkley, S.J., et al.: Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008)CrossRef
68.
Zurück zum Zitat Thomas, D.G., Yenepalli, A., Denais, C.M., et al.: Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion. J. Cell Biol. 210, 583–594 (2015)CrossRef Thomas, D.G., Yenepalli, A., Denais, C.M., et al.: Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion. J. Cell Biol. 210, 583–594 (2015)CrossRef
69.
Zurück zum Zitat Beadle, C., Assanah, M.C., Monzo, P., et al.: The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 19, 3357–3368 (2008)CrossRef Beadle, C., Assanah, M.C., Monzo, P., et al.: The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 19, 3357–3368 (2008)CrossRef
70.
Zurück zum Zitat Thiam, H.R., Vargas, P., Carpi, N., et al.: Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat. Commun. 7, 10997 (2016)CrossRef Thiam, H.R., Vargas, P., Carpi, N., et al.: Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat. Commun. 7, 10997 (2016)CrossRef
71.
Zurück zum Zitat Chen, M.B., Whisler, J.A., Jeon, J.S., et al.: Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. 5, 1262–1271 (2013)CrossRef Chen, M.B., Whisler, J.A., Jeon, J.S., et al.: Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. 5, 1262–1271 (2013)CrossRef
72.
Zurück zum Zitat Irianto, J., Xia, Y., Pfeifer, C.R., et al.: As a nucleus enters a small pore, chromatin stretches and maintains integrity, even with DNA breaks. Biophys. J. 112, 446–449 (2016)CrossRef Irianto, J., Xia, Y., Pfeifer, C.R., et al.: As a nucleus enters a small pore, chromatin stretches and maintains integrity, even with DNA breaks. Biophys. J. 112, 446–449 (2016)CrossRef
73.
Zurück zum Zitat Wu, J., Kent, I.A., Shekhar, N., et al.: Actomyosin pulls to advance the nucleus in a migrating tissue cell. Biophys. J. 106, 7–15 (2014)CrossRef Wu, J., Kent, I.A., Shekhar, N., et al.: Actomyosin pulls to advance the nucleus in a migrating tissue cell. Biophys. J. 106, 7–15 (2014)CrossRef
74.
Zurück zum Zitat Irianto, J., Xia, Y., Pfeifer, C.R., et al.: DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol. 27, 210–223 (2017)CrossRef Irianto, J., Xia, Y., Pfeifer, C.R., et al.: DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol. 27, 210–223 (2017)CrossRef
75.
Zurück zum Zitat De Vos, W.H., Houben, F., Kamps, M., et al.: Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum. Mol. Genet. 20, 4175–4186 (2011)CrossRef De Vos, W.H., Houben, F., Kamps, M., et al.: Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum. Mol. Genet. 20, 4175–4186 (2011)CrossRef
76.
Zurück zum Zitat Tamiello, C., Kamps, M.A., van den Wijngaard, A., et al.: Soft substrates normalize nuclear morphology and prevent nuclear rupture in fibroblasts from a laminopathy patient with compound heterozygous LMNA mutations. Nucleus 4, 61–73 (2013)CrossRef Tamiello, C., Kamps, M.A., van den Wijngaard, A., et al.: Soft substrates normalize nuclear morphology and prevent nuclear rupture in fibroblasts from a laminopathy patient with compound heterozygous LMNA mutations. Nucleus 4, 61–73 (2013)CrossRef
77.
Zurück zum Zitat Hatch, E.M., Hetzer, M.W.: Nuclear envelope rupture is induced by actin-based nucleus confinement. J. Cell Biol. 215, 27–36 (2016)CrossRef Hatch, E.M., Hetzer, M.W.: Nuclear envelope rupture is induced by actin-based nucleus confinement. J. Cell Biol. 215, 27–36 (2016)CrossRef
78.
Zurück zum Zitat Xia, Y., Ivanovska, I.L., Zhu, K., et al.: Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. J. Cell Biol. 217, 3796–3808 (2018)CrossRef Xia, Y., Ivanovska, I.L., Zhu, K., et al.: Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. J. Cell Biol. 217, 3796–3808 (2018)CrossRef
79.
Zurück zum Zitat Raschke, S., Spickermann, S., Toncian, T., et al.: Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams. Sci. Rep. 6, 32441 (2016)CrossRef Raschke, S., Spickermann, S., Toncian, T., et al.: Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams. Sci. Rep. 6, 32441 (2016)CrossRef
80.
Zurück zum Zitat Luecke, S., Holleufer, A., Christensen, M.H., et al.: cGAS is activated by DNA in a length-dependent manner. EMBO Rep. 18, 1701–1715 (2017)CrossRef Luecke, S., Holleufer, A., Christensen, M.H., et al.: cGAS is activated by DNA in a length-dependent manner. EMBO Rep. 18, 1701–1715 (2017)CrossRef
81.
Zurück zum Zitat Chen, Q., Sun, L., Chen, Z.J.: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016)CrossRef Chen, Q., Sun, L., Chen, Z.J.: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016)CrossRef
82.
Zurück zum Zitat Harding, S.M., Benci, J.L., Irianto, J., et al.: Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017)CrossRef Harding, S.M., Benci, J.L., Irianto, J., et al.: Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017)CrossRef
83.
Zurück zum Zitat Vietri, M., Schink, K.O., Campsteijn, C., et al.: Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522, 231–235 (2015)CrossRef Vietri, M., Schink, K.O., Campsteijn, C., et al.: Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522, 231–235 (2015)CrossRef
84.
Zurück zum Zitat Olmos, Y., Hodgson, L., Mantell, J., et al.: ESCRT-III controls nuclear envelope reformation. Nature 522, 236–239 (2015)CrossRef Olmos, Y., Hodgson, L., Mantell, J., et al.: ESCRT-III controls nuclear envelope reformation. Nature 522, 236–239 (2015)CrossRef
85.
Zurück zum Zitat Jimenez, A.J., Maiuri, P., Lafaurie-Janvore, J., et al.: ESCRT machinery is required for plasma membrane repair. Science 343, 1247136 (2014)CrossRef Jimenez, A.J., Maiuri, P., Lafaurie-Janvore, J., et al.: ESCRT machinery is required for plasma membrane repair. Science 343, 1247136 (2014)CrossRef
86.
Zurück zum Zitat Bennett, R.R., Pfeifer, C.R., Irianto, J., et al.: Elastic-fluid model for DNA damage and mutation from nuclear fluid segregation due to cell migration. Biophys. J. 112, 2271–2279 (2017)CrossRef Bennett, R.R., Pfeifer, C.R., Irianto, J., et al.: Elastic-fluid model for DNA damage and mutation from nuclear fluid segregation due to cell migration. Biophys. J. 112, 2271–2279 (2017)CrossRef
87.
Zurück zum Zitat Bancaud, A., Huet, S., Daigle, N., et al.: Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J. 28, 3785–3798 (2009)CrossRef Bancaud, A., Huet, S., Daigle, N., et al.: Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J. 28, 3785–3798 (2009)CrossRef
88.
Zurück zum Zitat Deviri, D., Discher, D.E., Safran, S.A.: Rupture dynamics and chromatin herniation in deformed nuclei. Biophys. J. 113, 1060–1071 (2017)CrossRef Deviri, D., Discher, D.E., Safran, S.A.: Rupture dynamics and chromatin herniation in deformed nuclei. Biophys. J. 113, 1060–1071 (2017)CrossRef
89.
Zurück zum Zitat Odde, D.J., Ma, L., Briggs, A.H., et al.: Microtubule bending and breaking in living fibroblast cells. J. Cell Sci. 112, 3283–3288 (1999) Odde, D.J., Ma, L., Briggs, A.H., et al.: Microtubule bending and breaking in living fibroblast cells. J. Cell Sci. 112, 3283–3288 (1999)
90.
Zurück zum Zitat Engler, A.J., Sen, S., Sweeney, H.L., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)CrossRef Engler, A.J., Sen, S., Sweeney, H.L., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)CrossRef
91.
Zurück zum Zitat Ivanovska, I.L., Swift, J., Spinler, K., et al.: Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation. Mol. Biol. Cell 28, 2010–2022 (2017)CrossRef Ivanovska, I.L., Swift, J., Spinler, K., et al.: Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation. Mol. Biol. Cell 28, 2010–2022 (2017)CrossRef
Metadaten
Titel
Nuclear mechanics during and after constricted migration
verfasst von
Yuntao Xia
Charlotte R. Pfeifer
Dennis E. Discher
Publikationsdatum
22.02.2019
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 2/2019
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-00836-9

Weitere Artikel der Ausgabe 2/2019

Acta Mechanica Sinica 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.