Skip to main content

2014 | OriginalPaper | Buchkapitel

85. Nuclear Receptor Property of E2F1 for Novel Anticancer Drug Discovery

verfasst von : Ning Zhang, Jin Li, Aimin Meng

Erschienen in: Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012)

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

E2F1, a member of transcription factor superfamily E2F, is similar to nuclear receptors such as estrogen receptor (ER) and peroxisome proliferators-activated receptors (PPARs) in structure and function. However, E2F1 plays a paradoxical role in cancer progression control. Instead of non-transcriptional function, the paradox mainly derives from E2F1 transcriptional function, which determines cell death or survival by different cofactors recruitment. This characteristic of E2F1 establishes itself as a good target for novel anticancer drug discovery and it is promising to develop appropriate small molecules with E2F1 antagonism activity or inverse agonist activity which might be even better for tumor suppression.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Timmers C, Sharma N, Opavsky R et al (2007) E2f1, E2f2 and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol Cell Biol 27:65–78CrossRef Timmers C, Sharma N, Opavsky R et al (2007) E2f1, E2f2 and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol Cell Biol 27:65–78CrossRef
2.
Zurück zum Zitat Wu L, Timmers C, Maiti B et al (2001) The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414:457–462CrossRef Wu L, Timmers C, Maiti B et al (2001) The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414:457–462CrossRef
3.
Zurück zum Zitat Engelmann D, Pützer BM (2010) Translating DNA damage into cancer cell death-A roadmap for E2F1 apoptotic signalling and opportunities for new drug combinations to overcome chemoresistance. Drug Resist Updates 13:119–131CrossRef Engelmann D, Pützer BM (2010) Translating DNA damage into cancer cell death-A roadmap for E2F1 apoptotic signalling and opportunities for new drug combinations to overcome chemoresistance. Drug Resist Updates 13:119–131CrossRef
4.
Zurück zum Zitat Johnson DG, Degregori J (2006) Putting the oncogenic and tumor suppressive activities of E2F into context. Curr Mol Med 6:731–738 Johnson DG, Degregori J (2006) Putting the oncogenic and tumor suppressive activities of E2F into context. Curr Mol Med 6:731–738
5.
Zurück zum Zitat Engelmann D, Pützer BM (2012) The dark side of E2F1: in transit beyond apoptosis. Cancer Res 72:571–575CrossRef Engelmann D, Pützer BM (2012) The dark side of E2F1: in transit beyond apoptosis. Cancer Res 72:571–575CrossRef
6.
Zurück zum Zitat Banerjee D, Schnieders B, Fu JZ et al (1998) Role of E2F1 in chemosensitivity. Cancer Res 58:4292–4296 Banerjee D, Schnieders B, Fu JZ et al (1998) Role of E2F1 in chemosensitivity. Cancer Res 58:4292–4296
7.
Zurück zum Zitat Dong YB, Yang HL, McMasters KM (2003) E2F1 overexpression sensitizes colorectal cancer cells to camptothecin. Cancer Gene Ther 10:168–178CrossRef Dong YB, Yang HL, McMasters KM (2003) E2F1 overexpression sensitizes colorectal cancer cells to camptothecin. Cancer Gene Ther 10:168–178CrossRef
8.
Zurück zum Zitat Hao H, Zhou HS, McMasters KM (2009) Chemosensitization of tumor cells: inactivation of nuclear factor-kappa B associated with chemosensitivity in melanoma cells after combination treatment with E2F1 and doxorubicin. Methods Mol Biol 542:301–313 Hao H, Zhou HS, McMasters KM (2009) Chemosensitization of tumor cells: inactivation of nuclear factor-kappa B associated with chemosensitivity in melanoma cells after combination treatment with E2F1 and doxorubicin. Methods Mol Biol 542:301–313
9.
Zurück zum Zitat Lammens T, Li J, Leone G et al (2009) Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol 19:111–118CrossRef Lammens T, Li J, Leone G et al (2009) Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol 19:111–118CrossRef
10.
Zurück zum Zitat DeGregori J, Johnson DG (2006) Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr Mol Med 6:739–748 DeGregori J, Johnson DG (2006) Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr Mol Med 6:739–748
11.
Zurück zum Zitat Rowland BD, Bernards R (2006) Re-evaluating cell cycle regulation by E2Fs. Cell 127:871–874CrossRef Rowland BD, Bernards R (2006) Re-evaluating cell cycle regulation by E2Fs. Cell 127:871–874CrossRef
12.
Zurück zum Zitat Chris MB, Moray JC (2010) Nuclear Receptors. Springer, New York Chris MB, Moray JC (2010) Nuclear Receptors. Springer, New York
13.
Zurück zum Zitat Biswas AK, Johnson DG (2012) Transcriptional and nontranscriptional functions of E2F1 in response to DNA damage. Cancer Res 72:3–7 Biswas AK, Johnson DG (2012) Transcriptional and nontranscriptional functions of E2F1 in response to DNA damage. Cancer Res 72:3–7
14.
Zurück zum Zitat Rubin SM, Gall AL, Zheng N et al (2005) Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell 123:1093–1106CrossRef Rubin SM, Gall AL, Zheng N et al (2005) Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell 123:1093–1106CrossRef
15.
Zurück zum Zitat Slansky JE, Farnham PJ (1996) Introduction to the E2F family: protein structure and gene regulation. Curr Top Microbiol Immunol 208:1–30CrossRef Slansky JE, Farnham PJ (1996) Introduction to the E2F family: protein structure and gene regulation. Curr Top Microbiol Immunol 208:1–30CrossRef
16.
Zurück zum Zitat Cress WD, Nevins JR (1996) A role for a bent DNA structure in E2F-mediated transcription activation. Mol Cell Biol 16(5):2119–2127 Cress WD, Nevins JR (1996) A role for a bent DNA structure in E2F-mediated transcription activation. Mol Cell Biol 16(5):2119–2127
17.
Zurück zum Zitat Lazzerini Denchi E, Helin K (2005) E2F1 is crucial for E2F-dependent apoptosis. EMBO Rep 6:661–668CrossRef Lazzerini Denchi E, Helin K (2005) E2F1 is crucial for E2F-dependent apoptosis. EMBO Rep 6:661–668CrossRef
18.
Zurück zum Zitat Ren B, Cam H, Takahashi Y et al (2002) E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev 16:245–256CrossRef Ren B, Cam H, Takahashi Y et al (2002) E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev 16:245–256CrossRef
19.
Zurück zum Zitat Alonso MM, Alemany R, Fueyo J et al (2008) E2F1 in gliomas: a paradigm of oncogene addiction. Cancer Lett 263:157–163CrossRef Alonso MM, Alemany R, Fueyo J et al (2008) E2F1 in gliomas: a paradigm of oncogene addiction. Cancer Lett 263:157–163CrossRef
20.
Zurück zum Zitat Feldstein O, Ben-Hamo R, Bashari D et al (2012) RBM38 is a direct transcriptional target of E2F1 that limits E2F1 induced proliferation. Mol Cancer Res 0(9):1169–1177 Feldstein O, Ben-Hamo R, Bashari D et al (2012) RBM38 is a direct transcriptional target of E2F1 that limits E2F1 induced proliferation. Mol Cancer Res 0(9):1169–1177
21.
Zurück zum Zitat Wu Z, Yu Q (2009) E2F1-mediated apoptosis as a target of cancer therapy. Curr Mol Pharmacol 2:149–160 Wu Z, Yu Q (2009) E2F1-mediated apoptosis as a target of cancer therapy. Curr Mol Pharmacol 2:149–160
22.
Zurück zum Zitat Freeman SN, Ma Y, Cress WD (2008) RhoBTB2 (DBC2) is a mitotic E2F1 target gene with a novel role in apoptosis. J Biol Chem 283:2353–2362CrossRef Freeman SN, Ma Y, Cress WD (2008) RhoBTB2 (DBC2) is a mitotic E2F1 target gene with a novel role in apoptosis. J Biol Chem 283:2353–2362CrossRef
23.
Zurück zum Zitat Lonard DM, O’Malley BW (2012) Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat Rev Endocrinol 8:598–604CrossRef Lonard DM, O’Malley BW (2012) Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat Rev Endocrinol 8:598–604CrossRef
24.
Zurück zum Zitat Martin K, Trouche D, Hagemeier C et al (1995) Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 375:691–694CrossRef Martin K, Trouche D, Hagemeier C et al (1995) Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 375:691–694CrossRef
25.
Zurück zum Zitat Verhaegen M, Checinska A, Riblett MB et al (2012) E2F1 dependent oncogenic addiction of melanoma cells to MDM2. Oncogene 31:828–841CrossRef Verhaegen M, Checinska A, Riblett MB et al (2012) E2F1 dependent oncogenic addiction of melanoma cells to MDM2. Oncogene 31:828–841CrossRef
26.
Zurück zum Zitat Revenko AS, Kalashnikova EV, Gemo AT et al (2010) Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark. Mol Cell Biol 30:5260–5272CrossRef Revenko AS, Kalashnikova EV, Gemo AT et al (2010) Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark. Mol Cell Biol 30:5260–5272CrossRef
27.
Zurück zum Zitat Brand TM, Iida M, Li C et al (2011) The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discovery Med 12:419–432 Brand TM, Iida M, Li C et al (2011) The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discovery Med 12:419–432
28.
Zurück zum Zitat Hanada N, Lo HW, Day CP et al (2006) Coregulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog 45:10–17CrossRef Hanada N, Lo HW, Day CP et al (2006) Coregulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog 45:10–17CrossRef
29.
Zurück zum Zitat Mussi P, Yu C, O’Malley BW et al (2006) Stimulation of steroid receptor coactivator 3 (SRC-3) gene overexpression by a positive regulatory loop of E2F1 and SRC-3. Mol Endocrinol 20:3105–3119CrossRef Mussi P, Yu C, O’Malley BW et al (2006) Stimulation of steroid receptor coactivator 3 (SRC-3) gene overexpression by a positive regulatory loop of E2F1 and SRC-3. Mol Endocrinol 20:3105–3119CrossRef
30.
Zurück zum Zitat Louie MC, Zou JX, Rabinovich A et al (2004) ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol 24:5157–5171CrossRef Louie MC, Zou JX, Rabinovich A et al (2004) ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol 24:5157–5171CrossRef
31.
Zurück zum Zitat Watabe Y, Nazuka N, Tezuka M et al (2010) Aryl hydrocarbon receptor functions as a potent coactivator of E2F1-dependent trascription activity. Biol Pharm Bull 33:389–397CrossRef Watabe Y, Nazuka N, Tezuka M et al (2010) Aryl hydrocarbon receptor functions as a potent coactivator of E2F1-dependent trascription activity. Biol Pharm Bull 33:389–397CrossRef
32.
Zurück zum Zitat Marlowe JL, Fan Y, Chang X et al (2008) The aryl hydrocarbon receptor binds to E2F1 and inhibits E2F1 induced apoptosis. Mol Biol Cell 19:3263–3271CrossRef Marlowe JL, Fan Y, Chang X et al (2008) The aryl hydrocarbon receptor binds to E2F1 and inhibits E2F1 induced apoptosis. Mol Biol Cell 19:3263–3271CrossRef
33.
Zurück zum Zitat Knight JR, Milner J (2012) SIRT1, metabolism and cancer. Curr Opin Oncol 24:68–75CrossRef Knight JR, Milner J (2012) SIRT1, metabolism and cancer. Curr Opin Oncol 24:68–75CrossRef
34.
Zurück zum Zitat Wang C, Chen L, Hou X et al (2006) Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 8:1025–1031CrossRef Wang C, Chen L, Hou X et al (2006) Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 8:1025–1031CrossRef
35.
Zurück zum Zitat Pediconi N, Guerrieri F, Vossio S et al (2009) hSirT1-dependent regulation of the PCAF-E2F1-p73 apoptotic pathway in response to DNA damage. Mol Cell Biol 29:1989–1998CrossRef Pediconi N, Guerrieri F, Vossio S et al (2009) hSirT1-dependent regulation of the PCAF-E2F1-p73 apoptotic pathway in response to DNA damage. Mol Cell Biol 29:1989–1998CrossRef
36.
Zurück zum Zitat Julian LM, Palander O, Seifried LA et al (2008) Characterization of an E2F1 specific binding domain in pRB and its implications for apoptotic regulation. Oncogene 27:1572–1579CrossRef Julian LM, Palander O, Seifried LA et al (2008) Characterization of an E2F1 specific binding domain in pRB and its implications for apoptotic regulation. Oncogene 27:1572–1579CrossRef
37.
Zurück zum Zitat Dick FA, Dyson N (2003) pRB contains an E2F1 specific binding domain that allows E2F1 induced apoptosis to be regulated separately from other E2F activities. Mol Cell 12:639–649CrossRef Dick FA, Dyson N (2003) pRB contains an E2F1 specific binding domain that allows E2F1 induced apoptosis to be regulated separately from other E2F activities. Mol Cell 12:639–649CrossRef
38.
Zurück zum Zitat O’Connor RJ, Schaley JE, Feeney G et al (2001) The p107 tumor suppressor induces stable E2F DNA binding to repress target promoters. Oncogene 20:1882–1891CrossRef O’Connor RJ, Schaley JE, Feeney G et al (2001) The p107 tumor suppressor induces stable E2F DNA binding to repress target promoters. Oncogene 20:1882–1891CrossRef
39.
Zurück zum Zitat Dai Y, Hamm TE, Dent P et al (2006) Cyclin D1 overexpression increases the susceptibility of human U266 myeloma cells to CDK inhibitors through a process involving p130-, p107- and E2F-dependent S phase entry. Cell Cycle 5:437–446CrossRef Dai Y, Hamm TE, Dent P et al (2006) Cyclin D1 overexpression increases the susceptibility of human U266 myeloma cells to CDK inhibitors through a process involving p130-, p107- and E2F-dependent S phase entry. Cell Cycle 5:437–446CrossRef
40.
Zurück zum Zitat Shackleford TJ, Claret FX (2010) JAB1/CSN5: a new player in cell cycle control and cancer. Cell Div 18:26CrossRef Shackleford TJ, Claret FX (2010) JAB1/CSN5: a new player in cell cycle control and cancer. Cell Div 18:26CrossRef
41.
Zurück zum Zitat Lu H, Liang X, Issaenko OA et al (2011) Jab1/CSN5 mediates E2F dependent expression of mitotic and apoptotic but not DNA replication targets. Cell Cycle 10:3317–3326CrossRef Lu H, Liang X, Issaenko OA et al (2011) Jab1/CSN5 mediates E2F dependent expression of mitotic and apoptotic but not DNA replication targets. Cell Cycle 10:3317–3326CrossRef
42.
Zurück zum Zitat Hallstrom TC, Nevins JR (2006) Jab1 is a specificity factor for E2F1 induced apoptosis. Genes Dev 20:613–623CrossRef Hallstrom TC, Nevins JR (2006) Jab1 is a specificity factor for E2F1 induced apoptosis. Genes Dev 20:613–623CrossRef
43.
Zurück zum Zitat Docquier A, Harmand PO, Fritsch S et al (2010) The transcriptional coregulator RIP140 represses E2F1 activity and discriminates breast cancer subtypes. Clin Cancer Res 16:2959–2970CrossRef Docquier A, Harmand PO, Fritsch S et al (2010) The transcriptional coregulator RIP140 represses E2F1 activity and discriminates breast cancer subtypes. Clin Cancer Res 16:2959–2970CrossRef
44.
Zurück zum Zitat Chapman EJ, Knowles MA (2009) Necdin: a multi functional protein with potential tumor suppressor role? Mol Carcinog 48:975–981CrossRef Chapman EJ, Knowles MA (2009) Necdin: a multi functional protein with potential tumor suppressor role? Mol Carcinog 48:975–981CrossRef
45.
Zurück zum Zitat Taniura H, Taniguchi N, Hara M et al (1998) Necdin, a postmitotic neuron-specific growth suppressor, interacts with viral transforming proteins and cellular transcription factor E2F1. J Biol Chem 273:720–728CrossRef Taniura H, Taniguchi N, Hara M et al (1998) Necdin, a postmitotic neuron-specific growth suppressor, interacts with viral transforming proteins and cellular transcription factor E2F1. J Biol Chem 273:720–728CrossRef
46.
Zurück zum Zitat Papaioannou M, Melle C, Baniahmad A (2007) The coregulator Alien. Nucl Recept Signal 5:e008 Papaioannou M, Melle C, Baniahmad A (2007) The coregulator Alien. Nucl Recept Signal 5:e008
47.
Zurück zum Zitat Tenbaum SP, Papaioannou M, Reeb CA et al (2007) Alien inhibits E2F1 gene expression and cell proliferation. Biochim Biophys Acta 1773:1447–1454CrossRef Tenbaum SP, Papaioannou M, Reeb CA et al (2007) Alien inhibits E2F1 gene expression and cell proliferation. Biochim Biophys Acta 1773:1447–1454CrossRef
48.
Zurück zum Zitat Hong W, Li J, Wang B et al (2011) Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation. Biochem Biophys Res Commun 415:650–655CrossRef Hong W, Li J, Wang B et al (2011) Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation. Biochem Biophys Res Commun 415:650–655CrossRef
49.
Zurück zum Zitat Li Y, Sun X, LaMont JT et al (2003) Selective killing of cancer cells by beta-lapachone: direct checkpoint activation as a strategy against cancer. Proc Natl Acad Sci U S A 100:2674–2678CrossRef Li Y, Sun X, LaMont JT et al (2003) Selective killing of cancer cells by beta-lapachone: direct checkpoint activation as a strategy against cancer. Proc Natl Acad Sci U S A 100:2674–2678CrossRef
50.
Zurück zum Zitat Choi YH, Kang HS, Yoo MA (2003) Suppression of human prostate cancer cell growth by beta-lapachone via down-regulation of pRB phosphorylation and induction of Cdk inhibitor p21(WAF1/CIP1). J Biochem Mol Biol 36:223–229CrossRef Choi YH, Kang HS, Yoo MA (2003) Suppression of human prostate cancer cell growth by beta-lapachone via down-regulation of pRB phosphorylation and induction of Cdk inhibitor p21(WAF1/CIP1). J Biochem Mol Biol 36:223–229CrossRef
51.
Zurück zum Zitat Ambrosini G, Sambol EB, Carvajal D et al (2007) Mouse double minute antagonist Nutlin-3a enhances chemotherapy induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 26:3473–3481CrossRef Ambrosini G, Sambol EB, Carvajal D et al (2007) Mouse double minute antagonist Nutlin-3a enhances chemotherapy induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 26:3473–3481CrossRef
52.
Zurück zum Zitat Kitagawa M, Aonuma M, Lee SH et al (2008) E2F1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines. Oncogene 27:5303–5314CrossRef Kitagawa M, Aonuma M, Lee SH et al (2008) E2F1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines. Oncogene 27:5303–5314CrossRef
53.
Zurück zum Zitat Yu B, Lane ME, Wadler S (2002) SU9516, a cyclin dependent kinase 2 inhibitor, promotes accumulation of high molecular weight E2F complexes in human colon carcinoma cells. Biochem Pharmacol 64:1091–1100CrossRef Yu B, Lane ME, Wadler S (2002) SU9516, a cyclin dependent kinase 2 inhibitor, promotes accumulation of high molecular weight E2F complexes in human colon carcinoma cells. Biochem Pharmacol 64:1091–1100CrossRef
54.
Zurück zum Zitat Lane ME, Yu B, Rice A et al (2001) A novel cdk2-selective inhibitor, SU9516, induces apoptosis in colon carcinoma cells. Cancer Res 61:6170–6177 Lane ME, Yu B, Rice A et al (2001) A novel cdk2-selective inhibitor, SU9516, induces apoptosis in colon carcinoma cells. Cancer Res 61:6170–6177
55.
Zurück zum Zitat Lee SH, Park C, Jin CY et al (2008) Involvement of extracellular signal-related kinase signaling in esculetin induced G1 arrest of human leukemia U937 cells. Biomed Pharmacother 62:723–729CrossRef Lee SH, Park C, Jin CY et al (2008) Involvement of extracellular signal-related kinase signaling in esculetin induced G1 arrest of human leukemia U937 cells. Biomed Pharmacother 62:723–729CrossRef
56.
Zurück zum Zitat Shi Y, Yang S, Troup S et al (2011) Resveratrol induces apoptosis in breast cancer cells by E2F1-mediated up-regulation of ASPP1. Oncol Rep 25:1713–1719 Shi Y, Yang S, Troup S et al (2011) Resveratrol induces apoptosis in breast cancer cells by E2F1-mediated up-regulation of ASPP1. Oncol Rep 25:1713–1719
57.
Zurück zum Zitat Oh WK, Cho KB, Hien TT et al (2010) Amurensin G, a potent natural SIRT1 inhibitor, rescues doxorubicin responsiveness via down regulation of multidrug resistance. Mol Pharmacol 78:855–864CrossRef Oh WK, Cho KB, Hien TT et al (2010) Amurensin G, a potent natural SIRT1 inhibitor, rescues doxorubicin responsiveness via down regulation of multidrug resistance. Mol Pharmacol 78:855–864CrossRef
58.
Zurück zum Zitat Kim JA, Kim MR, Kim O et al (2012) Amurensin G inhibits angiogenesis and tumor growth of tamoxifen resistant breast cancer via Pin1 inhibition. Food Chem Toxicol 50:3625–3634CrossRef Kim JA, Kim MR, Kim O et al (2012) Amurensin G inhibits angiogenesis and tumor growth of tamoxifen resistant breast cancer via Pin1 inhibition. Food Chem Toxicol 50:3625–3634CrossRef
59.
Zurück zum Zitat Zhao Y, Tan J, Zhuang L et al (2005) Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc Natl Acad Sci U S A 102:16090–16095CrossRef Zhao Y, Tan J, Zhuang L et al (2005) Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc Natl Acad Sci U S A 102:16090–16095CrossRef
60.
Zurück zum Zitat Muller PA, Vousden KH, Norman JC (2011) P53 and its mutants in tumor cell migration and invasion. J Cell Biol 192:209–218CrossRef Muller PA, Vousden KH, Norman JC (2011) P53 and its mutants in tumor cell migration and invasion. J Cell Biol 192:209–218CrossRef
61.
Zurück zum Zitat Gordon GM, Du W (2011) Targeting Rb inactivation in cancers by synthetic lethality. Am J Cancer Res 1:773–786 Gordon GM, Du W (2011) Targeting Rb inactivation in cancers by synthetic lethality. Am J Cancer Res 1:773–786
Metadaten
Titel
Nuclear Receptor Property of E2F1 for Novel Anticancer Drug Discovery
verfasst von
Ning Zhang
Jin Li
Aimin Meng
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37922-2_85

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.