Skip to main content
Erschienen in:

14.06.2017

Numerical Computation of Galois Groups

verfasst von: Jonathan D. Hauenstein, Jose Israel Rodriguez, Frank Sottile

Erschienen in: Foundations of Computational Mathematics | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Galois/monodromy group of a family of geometric problems or equations is a subtle invariant that encodes the structure of the solutions. We give numerical methods to compute the Galois group and study it when it is not the full symmetric group. One algorithm computes generators, while the other studies its structure as a permutation group. We illustrate these algorithms with examples using a Macaulay2 package we are developing that relies upon Bertini to perform monodromy computations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
Literatur
1.
Zurück zum Zitat H. Alt, Über die erzeugung gegebener ebener kurven mit hilfe des gelenkviereckes, Zeitschrift für Angewandte Mathematik und Mechanik, 3 (1923), pp. 13–19.CrossRefMATH H. Alt, Über die erzeugung gegebener ebener kurven mit hilfe des gelenkviereckes, Zeitschrift für Angewandte Mathematik und Mechanik, 3 (1923), pp. 13–19.CrossRefMATH
2.
Zurück zum Zitat B. Anderson and U. Helmke, Counting critical formations on a line, SIAM Journal on Control and Optimization, 52 (2014), pp. 219–242.MathSciNetCrossRefMATH B. Anderson and U. Helmke, Counting critical formations on a line, SIAM Journal on Control and Optimization, 52 (2014), pp. 219–242.MathSciNetCrossRefMATH
4.
5.
Zurück zum Zitat D. Bates, J. Hauenstein, A. Sommese, and C. Wampler, Adaptive multiprecision path tracking, SIAM J. Numer. Anal., 46 (2008), pp. 722–746. D. Bates, J. Hauenstein, A. Sommese, and C. Wampler, Adaptive multiprecision path tracking, SIAM J. Numer. Anal., 46 (2008), pp. 722–746.
6.
Zurück zum Zitat D. Bates, J. Hauenstein, A. Sommese, and C. Wampler, Numerically solving polynomial systems with Bertini, vol. 25 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013. D. Bates, J. Hauenstein, A. Sommese, and C. Wampler, Numerically solving polynomial systems with Bertini, vol. 25 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.
7.
Zurück zum Zitat D. Brake, J. Hauenstein, A. Murray, D. Myszka, and C. Wampler, The complete solution of Alt-Burmester synthesis problems for four-bar linkages, Journal of Mechanisms and Robotics, 8 (2016), p. 041018.CrossRef D. Brake, J. Hauenstein, A. Murray, D. Myszka, and C. Wampler, The complete solution of Alt-Burmester synthesis problems for four-bar linkages, Journal of Mechanisms and Robotics, 8 (2016), p. 041018.CrossRef
8.
Zurück zum Zitat C. Brooks, A. Martín del Campo, and F. Sottile, Galois groups of Schubert problems of lines are at least alternating, Trans. Amer. Math. Soc., 367 (2015), pp. 4183–4206.MathSciNetCrossRefMATH C. Brooks, A. Martín del Campo, and F. Sottile, Galois groups of Schubert problems of lines are at least alternating, Trans. Amer. Math. Soc., 367 (2015), pp. 4183–4206.MathSciNetCrossRefMATH
9.
Zurück zum Zitat L. Burmester, Lehrbuch der Kinematic, Verlag Von Arthur Felix, Leipzig, Germany, 1886.MATH L. Burmester, Lehrbuch der Kinematic, Verlag Von Arthur Felix, Leipzig, Germany, 1886.MATH
10.
Zurück zum Zitat P. Cameron, Permutation groups, vol. 45 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 1999. P. Cameron, Permutation groups, vol. 45 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 1999.
11.
Zurück zum Zitat A. Dimca, Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992.CrossRefMATH A. Dimca, Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992.CrossRefMATH
12.
Zurück zum Zitat J. Draisma and J. I. Rodriguez, Maximum likelihood duality for determinantal varieties, International Mathematics Research Notices, 2014(2014), pp. 5648–5666.MathSciNetCrossRefMATH J. Draisma and J. I. Rodriguez, Maximum likelihood duality for determinantal varieties, International Mathematics Research Notices, 2014(2014), pp. 5648–5666.MathSciNetCrossRefMATH
13.
Zurück zum Zitat A. Galligo and A. Poteaux, Computing monodromy via continuation methods on random Riemann surfaces, Theoret. Comput. Sci., 412 (2011), pp. 1492–1507.MathSciNetCrossRefMATH A. Galligo and A. Poteaux, Computing monodromy via continuation methods on random Riemann surfaces, Theoret. Comput. Sci., 412 (2011), pp. 1492–1507.MathSciNetCrossRefMATH
15.
Zurück zum Zitat P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original.
17.
Zurück zum Zitat J. Hauenstein, I. Haywood, and A. Liddell, Jr., An a posteriori certification algorithm for Newton homotopies, in ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2014, pp. 248–255. J. Hauenstein, I. Haywood, and A. Liddell, Jr., An a posteriori certification algorithm for Newton homotopies, in ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2014, pp. 248–255.
18.
Zurück zum Zitat J. Hauenstein, J. Rodriguez, and B. Sturmfels, Maximum likelihood for matrices with rank constraints, Journal of Algebraic Statistics, 5 (2014), pp. 18–38.MathSciNetCrossRefMATH J. Hauenstein, J. Rodriguez, and B. Sturmfels, Maximum likelihood for matrices with rank constraints, Journal of Algebraic Statistics, 5 (2014), pp. 18–38.MathSciNetCrossRefMATH
19.
Zurück zum Zitat J. Hauenstein and A. Sommese, Witness sets of projections, Appl. Math. Comput., 217 (2010), pp. 3349–3354.MathSciNetMATH J. Hauenstein and A. Sommese, Witness sets of projections, Appl. Math. Comput., 217 (2010), pp. 3349–3354.MathSciNetMATH
20.
Zurück zum Zitat N. Hein, F. Sottile, and I. Zelenko, A congruence modulo four for real Schubert calculus with isotropic flags, 2016. Canadian Mathematical Bulletin, to appear. N. Hein, F. Sottile, and I. Zelenko, A congruence modulo four for real Schubert calculus with isotropic flags, 2016. Canadian Mathematical Bulletin, to appear.
21.
Zurück zum Zitat N. Hein, F. Sottile, and I. Zelenko, A congruence modulo four in real Schubert calculus, J. Reine Angew. Math., 714 (2016), pp. 151–174. N. Hein, F. Sottile, and I. Zelenko, A congruence modulo four in real Schubert calculus, J. Reine Angew. Math., 714 (2016), pp. 151–174.
22.
Zurück zum Zitat C. Hermite, Sur les fonctions algébriques, CR Acad. Sci.(Paris), 32 (1851), pp. 458–461. C. Hermite, Sur les fonctions algébriques, CR Acad. Sci.(Paris), 32 (1851), pp. 458–461.
24.
Zurück zum Zitat S. Hoşten, A. Khetan, and B. Sturmfels, Solving the likelihood equations, Found. Comput. Math., 5 (2005), pp. 389–407.MathSciNetCrossRefMATH S. Hoşten, A. Khetan, and B. Sturmfels, Solving the likelihood equations, Found. Comput. Math., 5 (2005), pp. 389–407.MathSciNetCrossRefMATH
25.
Zurück zum Zitat J. Huh and B. Sturmfels, Likelihood geometry, in Combinatorial algebraic geometry, vol. 2108 of Lecture Notes in Math., Springer, 2014, pp. 63–117. J. Huh and B. Sturmfels, Likelihood geometry, in Combinatorial algebraic geometry, vol. 2108 of Lecture Notes in Math., Springer, 2014, pp. 63–117.
26.
Zurück zum Zitat C. Jordan, Traité des Substitutions, Gauthier-Villars, Paris, 1870.MATH C. Jordan, Traité des Substitutions, Gauthier-Villars, Paris, 1870.MATH
27.
Zurück zum Zitat A. Leykin and F. Sottile, Galois groups of Schubert problems via homotopy computation, Math. Comp., 78 (2009), pp. 1749–1765.MathSciNetCrossRefMATH A. Leykin and F. Sottile, Galois groups of Schubert problems via homotopy computation, Math. Comp., 78 (2009), pp. 1749–1765.MathSciNetCrossRefMATH
28.
Zurück zum Zitat A. Martín del Campo and F. Sottile, Experimentation in the Schubert calculus, in Schubert Calculus—Osaka 2012, Mathematical Society of Japan, Tokyo, 2016, pp. 295–336. A. Martín del Campo and F. Sottile, Experimentation in the Schubert calculus, in Schubert Calculus—Osaka 2012, Mathematical Society of Japan, Tokyo, 2016, pp. 295–336.
29.
Zurück zum Zitat D. Molzahn, M. Niemerg, D. Mehta, and J. Hauenstein, Investigating the maximum number of real solutions to the power flow equations: Analysis of lossless four-bus systems. arXiv:1603.05908, 2016. D. Molzahn, M. Niemerg, D. Mehta, and J. Hauenstein, Investigating the maximum number of real solutions to the power flow equations: Analysis of lossless four-bus systems. arXiv:​1603.​05908, 2016.
30.
Zurück zum Zitat A. Poteaux, Computing monodromy groups defined by plane algebraic curves, in SNC’07, ACM, New York, 2007, pp. 36–45. A. Poteaux, Computing monodromy groups defined by plane algebraic curves, in SNC’07, ACM, New York, 2007, pp. 36–45.
31.
Zurück zum Zitat N. Rennert and A. Valibouze, Calcul de résolvantes avec les modules de Cauchy, Experiment. Math., 8 (1999), pp. 351–366.MathSciNetCrossRefMATH N. Rennert and A. Valibouze, Calcul de résolvantes avec les modules de Cauchy, Experiment. Math., 8 (1999), pp. 351–366.MathSciNetCrossRefMATH
32.
Zurück zum Zitat J. Rodriguez and X. Tang, Data-discriminants of likelihood equations, in Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’15, New York, NY, USA, 2015, ACM, pp. 307–314. J. Rodriguez and X. Tang, Data-discriminants of likelihood equations, in Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’15, New York, NY, USA, 2015, ACM, pp. 307–314.
33.
Zurück zum Zitat J. Ruffo, Y. Sivan, E. Soprunova, and F. Sottile, Experimentation and conjectures in the real Schubert calculus for flag manifolds, Experiment. Math., 15 (2006), pp. 199–221. MathSciNetCrossRefMATH J. Ruffo, Y. Sivan, E. Soprunova, and F. Sottile, Experimentation and conjectures in the real Schubert calculus for flag manifolds, Experiment. Math., 15 (2006), pp. 199–221. MathSciNetCrossRefMATH
34.
Zurück zum Zitat L. Scott, Representations in characteristic \(p\), in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), vol. 37 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R.I., 1980, pp. 319–331. L. Scott, Representations in characteristic \(p\), in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), vol. 37 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R.I., 1980, pp. 319–331.
35.
Zurück zum Zitat A. Sommese, J. Verschelde, and C. Wampler, Introduction to numerical algebraic geometry, in Solving polynomial equations, vol. 14 of Algorithms Comput. Math., Springer, Berlin, 2005, pp. 301–335. A. Sommese, J. Verschelde, and C. Wampler, Introduction to numerical algebraic geometry, in Solving polynomial equations, vol. 14 of Algorithms Comput. Math., Springer, Berlin, 2005, pp. 301–335.
36.
Zurück zum Zitat A. Sommese and C. Wampler, Numerical algebraic geometry, in The mathematics of numerical analysis (Park City, UT, 1995), vol. 32 of Lectures in Appl. Math., Amer. Math. Soc., Providence, RI, 1996, pp. 749–763. A. Sommese and C. Wampler, Numerical algebraic geometry, in The mathematics of numerical analysis (Park City, UT, 1995), vol. 32 of Lectures in Appl. Math., Amer. Math. Soc., Providence, RI, 1996, pp. 749–763.
37.
Zurück zum Zitat A. Sommese and C. Wampler, The numerical solution of systems of polynomials, World Scientific Publishing Co. Pte.Ltd., Hackensack, NJ, 2005. A. Sommese and C. Wampler, The numerical solution of systems of polynomials, World Scientific Publishing Co. Pte.Ltd., Hackensack, NJ, 2005.
38.
Zurück zum Zitat A. Sommese and C. Wampler, Exceptional sets and fiber products, Found. Comput. Math., 8 (2008), pp. 171–196. A. Sommese and C. Wampler, Exceptional sets and fiber products, Found. Comput. Math., 8 (2008), pp. 171–196.
39.
Zurück zum Zitat F. Sottile and J. White, Double transitivity of Galois groups in Schubert calculus of Grassmannians, Algebr. Geom., 2 (2015), pp. 422–445. MathSciNetCrossRefMATH F. Sottile and J. White, Double transitivity of Galois groups in Schubert calculus of Grassmannians, Algebr. Geom., 2 (2015), pp. 422–445. MathSciNetCrossRefMATH
40.
Zurück zum Zitat Y. Tong, D. Myszka, and A. Murray, Four-bar linkage synthesis for a combination of motion and path-point generation, Proceedings of the ASME International Design Engineering Technical Conferences, DETC2013-12969 (2013). Y. Tong, D. Myszka, and A. Murray, Four-bar linkage synthesis for a combination of motion and path-point generation, Proceedings of the ASME International Design Engineering Technical Conferences, DETC2013-12969 (2013).
41.
Zurück zum Zitat R. Vakil, Schubert induction, Ann. of Math. (2), 164 (2006), pp. 489–512. R. Vakil, Schubert induction, Ann. of Math. (2), 164 (2006), pp. 489–512.
42.
Zurück zum Zitat O. Zariski, A theorem on the Poincaré group of an algebraic hypersurface, Annals of Mathematics, 38 (1937), pp. 131–141. MathSciNetCrossRefMATH O. Zariski, A theorem on the Poincaré group of an algebraic hypersurface, Annals of Mathematics, 38 (1937), pp. 131–141. MathSciNetCrossRefMATH
Metadaten
Titel
Numerical Computation of Galois Groups
verfasst von
Jonathan D. Hauenstein
Jose Israel Rodriguez
Frank Sottile
Publikationsdatum
14.06.2017
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 4/2018
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-017-9356-x