Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 5/2022

17.11.2021 | Original Research

Numerical framework for the Caputo time-fractional diffusion equation with fourth order derivative in space

verfasst von: Sadia Arshad, Mubashara Wali, Jianfei Huang, Sadia Khalid, Nosheen Akbar

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A finite difference scheme along with a fourth-order approximation is examined in this article for finding the solution of time-fractional diffusion equation with fourth-order derivative in space subject to homogeneous and non-homogeneous boundary conditions. Caputo fractional derivative is used to describe the time derivative. The time-fractional diffusion equation of order \(0< \gamma < 1\) is transformed into Volterra integral equation which is then approximated by linear interpolation. A novel numerical scheme based on fractional trapezoid formula for time discretization followed by Stephenson’s scheme to discretize the fourth order space derivative is developed for the linear diffusion equation. Afterward, convergence and stability are investigated thoroughly showing that the proposed scheme is unconditionally stable and hold convergence accuracy of order \(O(\tau ^{2}+h^{4})\). The numerical examples are presented in accordance with the theoretical results showing the efficiency and accuracy of the presented numerical technique.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baskonus, H.M., Mekkaoui, T., Hammouch, Z., Bulut, H.: Active control of a chaotic fractional order economic system. Entropy 17, 5771–5783 (2015)CrossRef Baskonus, H.M., Mekkaoui, T., Hammouch, Z., Bulut, H.: Active control of a chaotic fractional order economic system. Entropy 17, 5771–5783 (2015)CrossRef
2.
Zurück zum Zitat Baskonus, H.M., Bulut, H.: Regarding on the prototype solutions for the nonlinear fractional-order biological population model. In: AIP Conf Proc (2016) Baskonus, H.M., Bulut, H.: Regarding on the prototype solutions for the nonlinear fractional-order biological population model. In: AIP Conf Proc (2016)
3.
Zurück zum Zitat Losada, J., Nieto, J.J.: Fractional integral associated to fractional derivatives with nonsingular Kernels. Progr. Fract. Differ. Appl. 7(3), 137–143 (2021) Losada, J., Nieto, J.J.: Fractional integral associated to fractional derivatives with nonsingular Kernels. Progr. Fract. Differ. Appl. 7(3), 137–143 (2021)
4.
Zurück zum Zitat Caputo, M., Fabrizio, M.: On the Singular kernels for fractional derivatives. Some applications to partial differential equations. Progr. Fract. Differ. Appl. 7(2), 79–82 (2021)CrossRef Caputo, M., Fabrizio, M.: On the Singular kernels for fractional derivatives. Some applications to partial differential equations. Progr. Fract. Differ. Appl. 7(2), 79–82 (2021)CrossRef
5.
Zurück zum Zitat Veeresha, P., Baskonus, H.M., Gao, W.: Strong interacting internal waves in rotating ocean: novel fractional approach. Axioms 10, 123 (2021)CrossRef Veeresha, P., Baskonus, H.M., Gao, W.: Strong interacting internal waves in rotating ocean: novel fractional approach. Axioms 10, 123 (2021)CrossRef
6.
Zurück zum Zitat Scher, H., Montroll, E.W.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12(6), 2455–2477 (1975)CrossRef Scher, H., Montroll, E.W.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12(6), 2455–2477 (1975)CrossRef
7.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000)
8.
Zurück zum Zitat Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15 (1997)CrossRef Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15 (1997)CrossRef
9.
Zurück zum Zitat Ren, L., Wang, Y.M.: A fourth-order extrapolated compact difference method for time-fractional convection–reaction–diffusion equations with spatially variable coefficients. Appl. Math. Comput. 312, 1–22 (2017)MathSciNetMATH Ren, L., Wang, Y.M.: A fourth-order extrapolated compact difference method for time-fractional convection–reaction–diffusion equations with spatially variable coefficients. Appl. Math. Comput. 312, 1–22 (2017)MathSciNetMATH
10.
Zurück zum Zitat Guo, X., Li, Y., Wang, H.: A fourth-order scheme for space fractional diffusion equations. J. Comput. Phys. 373, 410–424 (2018)MathSciNetMATHCrossRef Guo, X., Li, Y., Wang, H.: A fourth-order scheme for space fractional diffusion equations. J. Comput. Phys. 373, 410–424 (2018)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Xing, Z., Wen, L.: Numerical analysis and fast implementation of a fourth-order difference scheme for two-dimensional space-fractional diffusion equations. Appl. Math. Comput. 346, 155–166 (2019)MathSciNetMATH Xing, Z., Wen, L.: Numerical analysis and fast implementation of a fourth-order difference scheme for two-dimensional space-fractional diffusion equations. Appl. Math. Comput. 346, 155–166 (2019)MathSciNetMATH
12.
Zurück zum Zitat Ran, M., Luo, T., Zhang, L.: Unconditionally stable compact theta schemes for solving the linear and semi-linear fourth-order diffusion equations. Appl. Math. Comput. 342, 118–129 (2019)MathSciNetMATH Ran, M., Luo, T., Zhang, L.: Unconditionally stable compact theta schemes for solving the linear and semi-linear fourth-order diffusion equations. Appl. Math. Comput. 342, 118–129 (2019)MathSciNetMATH
13.
Zurück zum Zitat Luo, H., Zhang, Q.: Regularity of global attractor for the fourth-order reaction–diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 17, 3824–3831 (2012)MathSciNetMATHCrossRef Luo, H., Zhang, Q.: Regularity of global attractor for the fourth-order reaction–diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 17, 3824–3831 (2012)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Guo, G., Lu, S.: Unconditional stability of alternating difference schemes with intrinsic parallelism for two-dimensional fourth-order diffusion equation. Comput. Math. Appl. 71, 1944–1959 (2016)MathSciNetMATHCrossRef Guo, G., Lu, S.: Unconditional stability of alternating difference schemes with intrinsic parallelism for two-dimensional fourth-order diffusion equation. Comput. Math. Appl. 71, 1944–1959 (2016)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Yang, X., Zhang, H., Xu, D.: Orthogonal spline collocation method for the fourth-order diffusion system. Appl. Math. Comput. 75, 3172–3185 (2018)MathSciNetMATHCrossRef Yang, X., Zhang, H., Xu, D.: Orthogonal spline collocation method for the fourth-order diffusion system. Appl. Math. Comput. 75, 3172–3185 (2018)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Soori, Z., Aminataei, A.: A new approximation to Caputo-type fractional diffusion and advection equations on non-uniform meshes. Appl. Numer. Math. 144, 21–41 (2019)MathSciNetMATHCrossRef Soori, Z., Aminataei, A.: A new approximation to Caputo-type fractional diffusion and advection equations on non-uniform meshes. Appl. Numer. Math. 144, 21–41 (2019)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Macías-Díaz, J.E., Hendy, A.S., De Staelen, R.H.: A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations. Appl. Math. Comput. 325, 1–14 (2018)MathSciNetMATH Macías-Díaz, J.E., Hendy, A.S., De Staelen, R.H.: A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations. Appl. Math. Comput. 325, 1–14 (2018)MathSciNetMATH
18.
Zurück zum Zitat Ran, M., Zhang, C.: New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order. Appl. Numer. Math. 129, 58–70 (2018)MathSciNetMATHCrossRef Ran, M., Zhang, C.: New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order. Appl. Numer. Math. 129, 58–70 (2018)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2019)MathSciNetMATHCrossRef Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2019)MathSciNetMATHCrossRef
20.
21.
Zurück zum Zitat Manimaran, J., Shangerganesh, L., Debbouche, A., Antonov, V.: Numerical solutions for time-fractional cancer invasion system with nonlocal diffusion. Front. Phys. 7, 93 (2019)CrossRef Manimaran, J., Shangerganesh, L., Debbouche, A., Antonov, V.: Numerical solutions for time-fractional cancer invasion system with nonlocal diffusion. Front. Phys. 7, 93 (2019)CrossRef
22.
Zurück zum Zitat Hu, X., Zhang, L.: A compact finite difference scheme for the fourth-order fractional diffusion-wave system. Comput. Phys. Commun. 182(10), 1645–1650 (2011)MathSciNetMATHCrossRef Hu, X., Zhang, L.: A compact finite difference scheme for the fourth-order fractional diffusion-wave system. Comput. Phys. Commun. 182(10), 1645–1650 (2011)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Zhong, J., Liao, H., Ji, B., Zhang, L.: A fourth-order compact solver for fractional-in-time fourth-order diffusion equations. arXiv:1907.01708v1 [math.NA] (2019) Zhong, J., Liao, H., Ji, B., Zhang, L.: A fourth-order compact solver for fractional-in-time fourth-order diffusion equations. arXiv:​1907.​01708v1 [math.NA] (2019)
24.
Zurück zum Zitat Li, X., Wong, P.J.Y.: Numerical solutions of fourth-order fractional sub-diffusion problems via parametric quintic spline (2019). 10.1002/zamm.201800094 Li, X., Wong, P.J.Y.: Numerical solutions of fourth-order fractional sub-diffusion problems via parametric quintic spline (2019). 10.1002/zamm.201800094
25.
Zurück zum Zitat Agrawal, O.P.: A general solution for the fourth-order fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 3, 1 (2000)MathSciNetMATH Agrawal, O.P.: A general solution for the fourth-order fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 3, 1 (2000)MathSciNetMATH
26.
Zurück zum Zitat Agrawal, O.P.: A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain. Comput. Struct. 79, 1497 (2001)CrossRef Agrawal, O.P.: A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain. Comput. Struct. 79, 1497 (2001)CrossRef
27.
Zurück zum Zitat Jafari, H., Dehghan, M., Sayevand, K.: Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method. Numer. Methods Partial Differ. Equ. 24, 1115 (2008)MathSciNetMATHCrossRef Jafari, H., Dehghan, M., Sayevand, K.: Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method. Numer. Methods Partial Differ. Equ. 24, 1115 (2008)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Wei, L., He, Y.: Analysis of a fully discrete local discontinuous Galerkin method for time fractional fourth-order problems. Appl. Math. Model. 38, 1511 (2014)MathSciNetMATHCrossRef Wei, L., He, Y.: Analysis of a fully discrete local discontinuous Galerkin method for time fractional fourth-order problems. Appl. Math. Model. 38, 1511 (2014)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703 (2014)MathSciNetMATH Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703 (2014)MathSciNetMATH
30.
Zurück zum Zitat Siddiqi, S.S., Arshed, S.: Numerical solution of time-fractional fourth-order partial differential equations. Int. J. Comput. Math. 92, 1496 (2015)MathSciNetMATHCrossRef Siddiqi, S.S., Arshed, S.: Numerical solution of time-fractional fourth-order partial differential equations. Int. J. Comput. Math. 92, 1496 (2015)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Zhai, S., Feng, X.: Investigations on several compact ADI methods for the 2D time fractional diffusion equation. Numer. Heat Transf. Part B Fundam. 69(4), 364–376 (2015)CrossRef Zhai, S., Feng, X.: Investigations on several compact ADI methods for the 2D time fractional diffusion equation. Numer. Heat Transf. Part B Fundam. 69(4), 364–376 (2015)CrossRef
32.
Zurück zum Zitat Chen, C., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equations. SIAM J. Sci. Comput. 32, 1740–1760 (2010)MathSciNetMATHCrossRef Chen, C., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equations. SIAM J. Sci. Comput. 32, 1740–1760 (2010)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Gao, G.H., Sun, Z.Z.: A compact difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)MathSciNetMATHCrossRef Gao, G.H., Sun, Z.Z.: A compact difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetMATHCrossRef Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetMATHCrossRef
35.
36.
Zurück zum Zitat Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank–Nicolson-type difference schemes for the sub-diffusion equation. SIAM J. Numer. Anal. 49, 2302–2322 (2011)MathSciNetMATHCrossRef Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank–Nicolson-type difference schemes for the sub-diffusion equation. SIAM J. Numer. Anal. 49, 2302–2322 (2011)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Gao, G.H., Sun, Z.Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetMATHCrossRef Gao, G.H., Sun, Z.Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)MathSciNetMATHCrossRef
38.
39.
Zurück zum Zitat Gao, G.H., Sun, H.W., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain super convergence. J. Comput. Phys. 280, 510–528 (2015)MathSciNetMATHCrossRef Gao, G.H., Sun, H.W., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain super convergence. J. Comput. Phys. 280, 510–528 (2015)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Vong, S., Wang, Z.: High order difference schemes for a time-fractional differential equation with Neumann boundary conditions. East Asian J. Appl. Math. 4, 222–241 (2014)MathSciNetMATHCrossRef Vong, S., Wang, Z.: High order difference schemes for a time-fractional differential equation with Neumann boundary conditions. East Asian J. Appl. Math. 4, 222–241 (2014)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Zhao, L., Deng, W.: A series of high order quasi-compact schemes for space fractional diffusion equations based on the super convergent approximations for fractional derivatives. Numer. Methods Partial Differ. Equ. 31, 1345–1381 (2015)MATHCrossRef Zhao, L., Deng, W.: A series of high order quasi-compact schemes for space fractional diffusion equations based on the super convergent approximations for fractional derivatives. Numer. Methods Partial Differ. Equ. 31, 1345–1381 (2015)MATHCrossRef
42.
Zurück zum Zitat Ji, C.C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)MathSciNetMATHCrossRef Ji, C.C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Huang, J., Yang, D.: A unified difference-spectral method for time-space fractional diffusion equations. Int. J. Comput. Math. 94(6), 1172–1184 (2017)MathSciNetMATHCrossRef Huang, J., Yang, D.: A unified difference-spectral method for time-space fractional diffusion equations. Int. J. Comput. Math. 94(6), 1172–1184 (2017)MathSciNetMATHCrossRef
44.
Zurück zum Zitat Dison, J., Mekee, S.: Weakly singular discrete Gronwall inequalities. Z. Angew. Math. Mech. 66, 535–544 (1986)MathSciNetCrossRef Dison, J., Mekee, S.: Weakly singular discrete Gronwall inequalities. Z. Angew. Math. Mech. 66, 535–544 (1986)MathSciNetCrossRef
45.
Zurück zum Zitat Huang, J.F., Tang, Y.F., Väzquez, L.: Convergence analysis of a block-by-block method for fractional differential equations. Numer. Math. Theor. Methods Appl. 5, 229–241 (2012)MathSciNetMATHCrossRef Huang, J.F., Tang, Y.F., Väzquez, L.: Convergence analysis of a block-by-block method for fractional differential equations. Numer. Math. Theor. Methods Appl. 5, 229–241 (2012)MathSciNetMATHCrossRef
46.
Zurück zum Zitat Cui, M.: Compact difference scheme for time-fractional fourth-order equation with the first Dirichlet boundary conditions. East Asian J. Appl. Math. 9, 45–66 (2019)MathSciNetMATHCrossRef Cui, M.: Compact difference scheme for time-fractional fourth-order equation with the first Dirichlet boundary conditions. East Asian J. Appl. Math. 9, 45–66 (2019)MathSciNetMATHCrossRef
47.
Zurück zum Zitat Ben-Artzi, M., Croisille, J.P., Fishelov, D.: A fast direct solver for the biharmonic problem in a rectangular grid. SIAM J. Sci. Comput. 31, 303–333 (2008)MathSciNetMATHCrossRef Ben-Artzi, M., Croisille, J.P., Fishelov, D.: A fast direct solver for the biharmonic problem in a rectangular grid. SIAM J. Sci. Comput. 31, 303–333 (2008)MathSciNetMATHCrossRef
48.
Zurück zum Zitat Fishelov, D., Ben-Artzi, M., Croisille, J.-P.: Recent advances in the study of a fourth-order compact scheme for the one-dimensional biharmonic equations. J. Sci. Comput. 53, 55–79 (2012)MathSciNetMATHCrossRef Fishelov, D., Ben-Artzi, M., Croisille, J.-P.: Recent advances in the study of a fourth-order compact scheme for the one-dimensional biharmonic equations. J. Sci. Comput. 53, 55–79 (2012)MathSciNetMATHCrossRef
49.
Zurück zum Zitat Thomas, J.W.: Numerical Partial Differential Equations (Finite Difference Methods), Texts in Applied Mathematics, vol. 22. Springer, New York (1995)CrossRef Thomas, J.W.: Numerical Partial Differential Equations (Finite Difference Methods), Texts in Applied Mathematics, vol. 22. Springer, New York (1995)CrossRef
50.
Zurück zum Zitat Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)MATHCrossRef Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)MATHCrossRef
Metadaten
Titel
Numerical framework for the Caputo time-fractional diffusion equation with fourth order derivative in space
verfasst von
Sadia Arshad
Mubashara Wali
Jianfei Huang
Sadia Khalid
Nosheen Akbar
Publikationsdatum
17.11.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 5/2022
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-021-01635-5

Weitere Artikel der Ausgabe 5/2022

Journal of Applied Mathematics and Computing 5/2022 Zur Ausgabe