Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

Numerical Homogenization Methods for Parabolic Monotone Problems

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we review various numerical homogenization methods for monotone parabolic problems with multiple scales. The spatial discretisation is based on finite element methods and the multiscale strategy relies on the heterogeneous multiscale method. The time discretization is performed by several classes of Runge-Kutta methods (strongly A-stable or explicit stabilized methods). We discuss the construction and the analysis of such methods for a range of problems, from linear parabolic problems to nonlinear monotone parabolic problems in the very general L p (W 1, p ) setting. We also show that under appropriate assumptions, a computationally attractive linearized method can be constructed for nonlinear problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We concentrate on simplicial elements for simplicity but note that many results presented in this paper can be extended to rectangular elements (see for example [9]).
 
Literatur
2.
Zurück zum Zitat A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4, 447–459 (2005)MathSciNetCrossRefMATH A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4, 447–459 (2005)MathSciNetCrossRefMATH
3.
Zurück zum Zitat A. Abdulle, The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs, in Multiple Scales Problems in Biomathematics, Mechanics, Physics and Numerics. GAKUTO International Series. Mathematical Sciences and Applications, vol. 31 (Gakkōtosho, Tokyo, 2009), pp. 133–181 A. Abdulle, The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs, in Multiple Scales Problems in Biomathematics, Mechanics, Physics and Numerics. GAKUTO International Series. Mathematical Sciences and Applications, vol. 31 (Gakkōtosho, Tokyo, 2009), pp. 133–181
4.
Zurück zum Zitat A. Abdulle, A priori and a posteriori error analysis for numerical homogenization: a unified framework. Ser. Contemp. Appl. Math. CAM 16, 280–305 (2011)MathSciNetMATH A. Abdulle, A priori and a posteriori error analysis for numerical homogenization: a unified framework. Ser. Contemp. Appl. Math. CAM 16, 280–305 (2011)MathSciNetMATH
5.
Zurück zum Zitat A. Abdulle, M.E. Huber, Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization. Numer. Methods Partial Differ. Equ. 32 (3), 737–1104 A. Abdulle, M.E. Huber, Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization. Numer. Methods Partial Differ. Equ. 32 (3), 737–1104
7.
8.
Zurück zum Zitat A. Abdulle, C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces. Multiscale Model. Simul. 3, 195–220 (2005)MathSciNetCrossRefMATH A. Abdulle, C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces. Multiscale Model. Simul. 3, 195–220 (2005)MathSciNetCrossRefMATH
9.
Zurück zum Zitat A. Abdulle, G. Vilmart, Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis. Math. Models Methods Appl. Sci. 22, 1250002/1–40 (2012)MathSciNetCrossRefMATH A. Abdulle, G. Vilmart, Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis. Math. Models Methods Appl. Sci. 22, 1250002/1–40 (2012)MathSciNetCrossRefMATH
10.
Zurück zum Zitat A. Abdulle, G. Vilmart, Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Math. Comput. 83, 513–536 (2014)MathSciNetCrossRefMATH A. Abdulle, G. Vilmart, Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Math. Comput. 83, 513–536 (2014)MathSciNetCrossRefMATH
11.
Zurück zum Zitat A. Abdulle, W. E, Finite difference heterogeneous multi-scale method for homogenization problems. J. Comput. Phys. 191, 18–39 (2003) A. Abdulle, W. E, Finite difference heterogeneous multi-scale method for homogenization problems. J. Comput. Phys. 191, 18–39 (2003)
12.
Zurück zum Zitat A. Abdulle, Y. Bai, G. Vilmart, An offline-online homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems. Int. J. Numer. Methods Eng. 99, 469–486 (2014)MathSciNetCrossRef A. Abdulle, Y. Bai, G. Vilmart, An offline-online homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems. Int. J. Numer. Methods Eng. 99, 469–486 (2014)MathSciNetCrossRef
13.
Zurück zum Zitat A. Abdulle, M.E. Huber, G. Vilmart, Linearized numerical homogenization method for nonlinear monotone parabolic multiscale problems. Multiscale Model. Simul. 13, 916–952 (2015)MathSciNetCrossRefMATH A. Abdulle, M.E. Huber, G. Vilmart, Linearized numerical homogenization method for nonlinear monotone parabolic multiscale problems. Multiscale Model. Simul. 13, 916–952 (2015)MathSciNetCrossRefMATH
14.
Zurück zum Zitat G. Allaire, M. Briane, Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinburgh Sect. A 126, 297–342 (1996)MathSciNetCrossRefMATH G. Allaire, M. Briane, Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinburgh Sect. A 126, 297–342 (1996)MathSciNetCrossRefMATH
15.
Zurück zum Zitat G. Allaire, R. Brizzi, A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 4, 790–812 (2005) (electronic) G. Allaire, R. Brizzi, A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 4, 790–812 (2005) (electronic)
16.
Zurück zum Zitat I. Babuška, J.E. Osborn, Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20, 510–536 (1983)MathSciNetCrossRefMATH I. Babuška, J.E. Osborn, Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20, 510–536 (1983)MathSciNetCrossRefMATH
17.
18.
Zurück zum Zitat A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978)MATH A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978)MATH
19.
Zurück zum Zitat L. Bers, F. John, M. Schechter, Partial differential equations, in Proceedings of the Summer Seminar. Lectures in Applied Mathematics, Boulder, CO (1957) L. Bers, F. John, M. Schechter, Partial differential equations, in Proceedings of the Summer Seminar. Lectures in Applied Mathematics, Boulder, CO (1957)
20.
Zurück zum Zitat M.E. Brewster, G. Beylkin, A multiresolution strategy for numerical homogenization. Appl. Comput. Harmon. Anal. 2, 327–349 (1995)MathSciNetCrossRefMATH M.E. Brewster, G. Beylkin, A multiresolution strategy for numerical homogenization. Appl. Comput. Harmon. Anal. 2, 327–349 (1995)MathSciNetCrossRefMATH
21.
Zurück zum Zitat V. Chiadò Piat, G. Dal Maso, A. Defranceschi, G-convergence of monotone operators. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 123–160 (1990)MathSciNetMATH V. Chiadò Piat, G. Dal Maso, A. Defranceschi, G-convergence of monotone operators. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 123–160 (1990)MathSciNetMATH
22.
Zurück zum Zitat P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4 (North-Holland, Amsterdam, 1978) P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4 (North-Holland, Amsterdam, 1978)
23.
Zurück zum Zitat P.G. Ciarlet, P.A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Academic, New York, 1972), pp. 409–474CrossRef P.G. Ciarlet, P.A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Academic, New York, 1972), pp. 409–474CrossRef
25.
Zurück zum Zitat M. Crouzeix, S. Larsson, S. Piskarëv, V. Thomée, The stability of rational approximations of analytic semigroups. BIT 33, 74–84 (1993)MathSciNetCrossRefMATH M. Crouzeix, S. Larsson, S. Piskarëv, V. Thomée, The stability of rational approximations of analytic semigroups. BIT 33, 74–84 (1993)MathSciNetCrossRefMATH
26.
Zurück zum Zitat G. Dal Maso, A. Defranceschi, Correctors for the homogenization of monotone operators. Differ. Integr. Equ. 3, 1151–1166 (1990)MathSciNetMATH G. Dal Maso, A. Defranceschi, Correctors for the homogenization of monotone operators. Differ. Integr. Equ. 3, 1151–1166 (1990)MathSciNetMATH
27.
Zurück zum Zitat L. Diening, C. Ebmeyer, M. Růžička, Optimal convergence for the implicit space-time discretization of parabolic systems with p-structure. SIAM J. Numer. Anal. 45, 457–472 (2007) (electronic) L. Diening, C. Ebmeyer, M. Růžička, Optimal convergence for the implicit space-time discretization of parabolic systems with p-structure. SIAM J. Numer. Anal. 45, 457–472 (2007) (electronic)
28.
Zurück zum Zitat R. Du, P. Ming, Heterogeneous multiscale finite element method with novel numerical integration schemes. Commun. Math. Sci. 8, 863–885 (2010)MathSciNetCrossRefMATH R. Du, P. Ming, Heterogeneous multiscale finite element method with novel numerical integration schemes. Commun. Math. Sci. 8, 863–885 (2010)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Y. Efendiev, T.Y. Hou, Multiscale Finite Element Methods. Theory and Applications. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4 (Springer, New York, 2009) Y. Efendiev, T.Y. Hou, Multiscale Finite Element Methods. Theory and Applications. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4 (Springer, New York, 2009)
30.
Zurück zum Zitat Y. Efendiev, A. Pankov, Numerical homogenization of nonlinear random parabolic operators. Multiscale Model. Simul. 2, 237–268 (2004)MathSciNetCrossRefMATH Y. Efendiev, A. Pankov, Numerical homogenization of nonlinear random parabolic operators. Multiscale Model. Simul. 2, 237–268 (2004)MathSciNetCrossRefMATH
31.
Zurück zum Zitat B. Engquist, O. Runborg, Wavelet-based numerical homogenization with applications, in Multiscale and Multiresolution Methods. Lecture Notes in Computational Science and Engineering, vol. 20 (Springer, Berlin, 2002), pp. 97–148 B. Engquist, O. Runborg, Wavelet-based numerical homogenization with applications, in Multiscale and Multiresolution Methods. Lecture Notes in Computational Science and Engineering, vol. 20 (Springer, Berlin, 2002), pp. 97–148
32.
Zurück zum Zitat M.G.D. Geers, V.G. Kouznetsova, W.A.M. Brekelmans, Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234, 2175–2182 (2010)CrossRefMATH M.G.D. Geers, V.G. Kouznetsova, W.A.M. Brekelmans, Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234, 2175–2182 (2010)CrossRefMATH
33.
Zurück zum Zitat A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies. Multiscale Model. Simul. 5, 996–1043 (2006) (electronic) A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies. Multiscale Model. Simul. 5, 996–1043 (2006) (electronic)
34.
Zurück zum Zitat A. Gloria, Reduction of the resonance error. Part 1: approximation of homogenized coefficients. Math. Models Methods Appl. Sci. 21, 1601–1630 (2011) A. Gloria, Reduction of the resonance error. Part 1: approximation of homogenized coefficients. Math. Models Methods Appl. Sci. 21, 1601–1630 (2011)
35.
Zurück zum Zitat E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems (Springer, Berlin/Heidelberg, 1996) E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems (Springer, Berlin/Heidelberg, 1996)
36.
Zurück zum Zitat P. Henning, M. Ohlberger, Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete Cont. Dyn. Syst. Ser. S 8, 119–150 (2015)MathSciNetCrossRefMATH P. Henning, M. Ohlberger, Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete Cont. Dyn. Syst. Ser. S 8, 119–150 (2015)MathSciNetCrossRefMATH
37.
Zurück zum Zitat P. Henning, D. Peterseim, Oversampling for the multiscale finite element method. SIAM Multiscale Model. Simul. 11, 1149–1175 (2013)MathSciNetCrossRefMATH P. Henning, D. Peterseim, Oversampling for the multiscale finite element method. SIAM Multiscale Model. Simul. 11, 1149–1175 (2013)MathSciNetCrossRefMATH
38.
Zurück zum Zitat T.Y. Hou, X.-H. Wu, Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68, 913–943 (1999)MathSciNetCrossRefMATH T.Y. Hou, X.-H. Wu, Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68, 913–943 (1999)MathSciNetCrossRefMATH
39.
Zurück zum Zitat T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.-B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)MathSciNetCrossRefMATH T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.-B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)MathSciNetCrossRefMATH
40.
Zurück zum Zitat V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, Berlin/Heidelberg, 1994)CrossRef V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, Berlin/Heidelberg, 1994)CrossRef
41.
42.
Zurück zum Zitat O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences, vol. 49 (Springer, New York, 1985) O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences, vol. 49 (Springer, New York, 1985)
43.
Zurück zum Zitat V. Lebedev, How to solve stiff systems of differential equations by explicit methods, in Numerical Methods and Applications, ed. by G.I. Marčuk (CRC Press, Boca Raton, 1994), pp. 45–80 V. Lebedev, How to solve stiff systems of differential equations by explicit methods, in Numerical Methods and Applications, ed. by G.I. Marčuk (CRC Press, Boca Raton, 1994), pp. 45–80
44.
45.
Zurück zum Zitat A. Målqvist, A. Persson, Multiscale techniques for parabolic equations (2015). arXiv:1504.08140 A. Målqvist, A. Persson, Multiscale techniques for parabolic equations (2015). arXiv:1504.08140
47.
Zurück zum Zitat P. Ming, P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems. Math. Comput. 76, 153–177 (2007)MathSciNetCrossRefMATH P. Ming, P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems. Math. Comput. 76, 153–177 (2007)MathSciNetCrossRefMATH
48.
Zurück zum Zitat G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)MathSciNetCrossRefMATH G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)MathSciNetCrossRefMATH
50.
Zurück zum Zitat A. Pankov, G -Convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications, vol. 422 (Kluwer Academic Publishers, Dordrecht, 1997) A. Pankov, G -Convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications, vol. 422 (Kluwer Academic Publishers, Dordrecht, 1997)
51.
Zurück zum Zitat B.P. Sommeijer, J.G. Verwer, A performance evaluation of a class of Runge-Kutta-Chebyshev methods for solving semi-discrete parabolic differential equations. Tech. rep., Stichting Mathematisch Centrum. Numerieke Wiskunde, Amsterdam, 1980. Report NW91/80 B.P. Sommeijer, J.G. Verwer, A performance evaluation of a class of Runge-Kutta-Chebyshev methods for solving semi-discrete parabolic differential equations. Tech. rep., Stichting Mathematisch Centrum. Numerieke Wiskunde, Amsterdam, 1980. Report NW91/80
53.
Zurück zum Zitat V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, vol. 25 (Springer, Berlin, 1997) V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, vol. 25 (Springer, Berlin, 1997)
54.
Zurück zum Zitat P. van der Houwen, B.P. Sommeijer, On the internal stage Runge-Kutta methods for large m-values. Z. Angew. Math. Mech. 60, 479–485 (1980)MathSciNetCrossRefMATH P. van der Houwen, B.P. Sommeijer, On the internal stage Runge-Kutta methods for large m-values. Z. Angew. Math. Mech. 60, 479–485 (1980)MathSciNetCrossRefMATH
55.
Zurück zum Zitat W. E, B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1, 87–132 (2003) W. E, B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1, 87–132 (2003)
56.
Zurück zum Zitat W. E, P. Ming, P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18, 121–156 (2005) W. E, P. Ming, P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18, 121–156 (2005)
57.
Zurück zum Zitat E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B (Springer, New York, 1990). Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B (Springer, New York, 1990). Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron
Metadaten
Titel
Numerical Homogenization Methods for Parabolic Monotone Problems
verfasst von
Assyr Abdulle
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-41640-3_1