Skip to main content
Erschienen in: Flow, Turbulence and Combustion 2-3/2020

03.09.2019

Numerical Investigation of Jet-Wake Interaction for a Dual-Bell Nozzle

verfasst von: Simon Loosen, Matthias Meinke, Wolfgang Schröder

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 2-3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The turbulent wake of a planar generic space launcher equipped with a dual-bell nozzle is numerically investigated to examine the interaction of the dual-bell nozzle jet and the wake flow. The simulation is performed at transonic freestream condition, i.e., freestream Mach number \(Ma_{\infty }= 0.8\) and freestream Reynolds number based on the launcher thickness ReD = 4.3 ⋅ 105, with the dual-bell nozzle operating at sea-level mode. A zonal RANS/LES approach is used and the time-resolved flow field data is analyzed by classical spectral analysis and modal decomposition techniques, i.e., proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The overall flow topology of the recirculation region downstream of the base and the pressure loads on the outer nozzle fairing are only slightly affected by the modified nozzle shape. However, the changed nozzle flow topology characterized by the flow separation at the nozzle contour inflection leads to a backflow region and an entrainment of the outer flow into the nozzle extension which results in increased pressure loads on the inner nozzle wall. Using spectral, POD, and DMD analyses, the outer wake flow is investigated, revealing a growing and contracting of the separation bubble and an undulating motion of the shear layer similar to the “cross-pumping” and “cross-flapping” motion detected in previous investigations of a configuration with a classical nozzle and a jetless backward facing step setup. The spectral and modal analysis of the nozzle flow shows that the increased pressure loads detected at the inner wall of the nozzle extension are caused by an interaction of the separated shear layer inside the nozzle extension with the shock pattern that leads to a streamwise oscillation of the shock and a pumping or wave-like motion of the shear layer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Stark, R., Génin, C.: Sea-level transitioning dual bell nozzles. CEAS Space J. 9, 279–287 (2017)CrossRef Stark, R., Génin, C.: Sea-level transitioning dual bell nozzles. CEAS Space J. 9, 279–287 (2017)CrossRef
2.
Zurück zum Zitat Proshchanka, D., Koichi, Y., Tsukuda, H., Araki, K., Tsujimoto, Y., Kimura, T., Yokota, K.: Jet oscillation at low-altitude operation mode in dual-bell nozzle jet oscillation at low-altitude operation mode in dual-bell nozzle jet oscillation at low-altitude operation mode in dual-bell nozzle. J. Propuls. Power 28(5), 1071–1080 (2012)CrossRef Proshchanka, D., Koichi, Y., Tsukuda, H., Araki, K., Tsujimoto, Y., Kimura, T., Yokota, K.: Jet oscillation at low-altitude operation mode in dual-bell nozzle jet oscillation at low-altitude operation mode in dual-bell nozzle jet oscillation at low-altitude operation mode in dual-bell nozzle. J. Propuls. Power 28(5), 1071–1080 (2012)CrossRef
3.
Zurück zum Zitat Martelli, E., Nasuti, F., Onofri, M.: Numerical parametric analysis of dual-bell nozzle flows. AIAA J., 45(3) (2007)CrossRef Martelli, E., Nasuti, F., Onofri, M.: Numerical parametric analysis of dual-bell nozzle flows. AIAA J., 45(3) (2007)CrossRef
4.
Zurück zum Zitat Schneider, D., Génin, C.: Numerical investigation of flow transition behavior in cold flow dual-bell rocket nozzles. J. Propuls. Power 32(5), 1212–1219 (2016)CrossRef Schneider, D., Génin, C.: Numerical investigation of flow transition behavior in cold flow dual-bell rocket nozzles. J. Propuls. Power 32(5), 1212–1219 (2016)CrossRef
5.
Zurück zum Zitat Bradshaw, P., Wong, F.: The reattachment and relaxation of a turbulent shear layer. J. Fluid Mech. 52(1), 113–135 (1972)CrossRef Bradshaw, P., Wong, F.: The reattachment and relaxation of a turbulent shear layer. J. Fluid Mech. 52(1), 113–135 (1972)CrossRef
6.
Zurück zum Zitat Eaton, J.K., Johnston, J.P.: A review of research on subsonic turbulent flow reattachment. AIAA J. 19(9), 1093–1100 (1981)CrossRef Eaton, J.K., Johnston, J.P.: A review of research on subsonic turbulent flow reattachment. AIAA J. 19(9), 1093–1100 (1981)CrossRef
7.
Zurück zum Zitat Driver, D.M., Seegmiller, H.L., Marvin, J.G.: Time-dependent behavior of a reattaching shear layer. AIAA J. 25(7), 914–919 (1987)CrossRef Driver, D.M., Seegmiller, H.L., Marvin, J.G.: Time-dependent behavior of a reattaching shear layer. AIAA J. 25(7), 914–919 (1987)CrossRef
8.
Zurück zum Zitat Friedrich, R., Arnal, M.: Analysing turbulent backward-facing step flow with the low-pass-filtered Navier-Stokes equations. J. Wind Eng. Ind. Aerodyn. 35, 101–128 (1990)CrossRef Friedrich, R., Arnal, M.: Analysing turbulent backward-facing step flow with the low-pass-filtered Navier-Stokes equations. J. Wind Eng. Ind. Aerodyn. 35, 101–128 (1990)CrossRef
9.
Zurück zum Zitat Silveria Neto, A., Grand, D., Metais, O., Lesieur, M.: A numerical investigation of the coherent vortices in turbulence behind a backward-facing step. J. Fluid Mech. 256, 1–25 (1993)CrossRef Silveria Neto, A., Grand, D., Metais, O., Lesieur, M.: A numerical investigation of the coherent vortices in turbulence behind a backward-facing step. J. Fluid Mech. 256, 1–25 (1993)CrossRef
10.
Zurück zum Zitat Le, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349–374 (1997)CrossRef Le, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349–374 (1997)CrossRef
11.
Zurück zum Zitat Lee, I., Sung, H.J.: Characteristics of wall pressure fluctuations in separated and reattaching flows over a backward-facing step: Part I. Time-mean statistics and cross-spectral analyses. Exp. Fluids 30, 262–272 (2001)CrossRef Lee, I., Sung, H.J.: Characteristics of wall pressure fluctuations in separated and reattaching flows over a backward-facing step: Part I. Time-mean statistics and cross-spectral analyses. Exp. Fluids 30, 262–272 (2001)CrossRef
12.
Zurück zum Zitat Statnikov, V., Bolgar, I., Scharnowski, S., Meinke, M., Kähler, C.J., Schröder, W.: Analysis of characteristic wake flow modes on a generic transonic backward-facing step configuration. Europ. J. Mech. B/Fluids 59, 124–134 (2016)MathSciNetCrossRef Statnikov, V., Bolgar, I., Scharnowski, S., Meinke, M., Kähler, C.J., Schröder, W.: Analysis of characteristic wake flow modes on a generic transonic backward-facing step configuration. Europ. J. Mech. B/Fluids 59, 124–134 (2016)MathSciNetCrossRef
13.
Zurück zum Zitat Scharnowski, S., Bolgar, I., Kähler, C.J.: Characterization of turbulent structures in a transonic backward-facing step flow. Flow, Turbul. Combust., 1–21 (2016) Scharnowski, S., Bolgar, I., Kähler, C.J.: Characterization of turbulent structures in a transonic backward-facing step flow. Flow, Turbul. Combust., 1–21 (2016)
14.
Zurück zum Zitat Bolgar, I., Scharnowski, S., Kähler, C.J.: The effect of the mach number on a turbulent backward-facing step flow. Flow Turbul. Combust. 101(3), 653–680 (2018)CrossRef Bolgar, I., Scharnowski, S., Kähler, C.J.: The effect of the mach number on a turbulent backward-facing step flow. Flow Turbul. Combust. 101(3), 653–680 (2018)CrossRef
15.
Zurück zum Zitat Deprés, D., Reijasse, P., Dussauge, J.P.: Analysis of unsteadiness in afterbody transonic flows. AIAA J. 42(12), 2541–2550 (2004)CrossRef Deprés, D., Reijasse, P., Dussauge, J.P.: Analysis of unsteadiness in afterbody transonic flows. AIAA J. 42(12), 2541–2550 (2004)CrossRef
16.
Zurück zum Zitat Deck, S., Thorigny, P.: Unsteadiness of an axisymmetric separating-reattaching flow: Numerical investigation. Phys. Fluids, 19(065103) (2007)CrossRef Deck, S., Thorigny, P.: Unsteadiness of an axisymmetric separating-reattaching flow: Numerical investigation. Phys. Fluids, 19(065103) (2007)CrossRef
17.
Zurück zum Zitat Schrijer, F., Sciacchitano, A., Scarano, F.: Spatio-temporal and modal analysis of unsteady fluctuations in a high-subsonic base flow. Phys. Fluids, 26(086101) (2014)CrossRef Schrijer, F., Sciacchitano, A., Scarano, F.: Spatio-temporal and modal analysis of unsteady fluctuations in a high-subsonic base flow. Phys. Fluids, 26(086101) (2014)CrossRef
18.
Zurück zum Zitat Statnikov, V., Meinke, M., Schröder, W.: Analysis of spatio-temporal wake modes of space launchers at transonic flow. AIAA Paper, 2016–1116 (2016) Statnikov, V., Meinke, M., Schröder, W.: Analysis of spatio-temporal wake modes of space launchers at transonic flow. AIAA Paper, 2016–1116 (2016)
19.
Zurück zum Zitat Statnikov, V., Meinke, M., Schröder, W.: Reduced-order analysis of buffet flow of space launchers. J. Fluid Mech. 815, 1–25 (2017)MathSciNetCrossRef Statnikov, V., Meinke, M., Schröder, W.: Reduced-order analysis of buffet flow of space launchers. J. Fluid Mech. 815, 1–25 (2017)MathSciNetCrossRef
20.
Zurück zum Zitat Bolgar, I., Scharnowski, S., Kähler, C.J.: Experimental analysis of the interaction between a dual-bell nozzle with an external flow field aft of a backward-facing step. 21 DGLR-Fach-Symposium der STAB (2018) Bolgar, I., Scharnowski, S., Kähler, C.J.: Experimental analysis of the interaction between a dual-bell nozzle with an external flow field aft of a backward-facing step. 21 DGLR-Fach-Symposium der STAB (2018)
21.
Zurück zum Zitat Loosen, S., Statnikov, V., Meinke, M., Schröder, W.: Numerical investigation of the turbulent wake of a generic space launcher at transonic speed. In: 7th European Conference for Aeronautics and Aerospace Sciences, https://doi.org/10.13009/EUCASS2017-561 (2017) Loosen, S., Statnikov, V., Meinke, M., Schröder, W.: Numerical investigation of the turbulent wake of a generic space launcher at transonic speed. In: 7th European Conference for Aeronautics and Aerospace Sciences, https://​doi.​org/​10.​13009/​EUCASS2017-561 (2017)
22.
Zurück zum Zitat David, S., Radulovic, S.: Prediction of buffet loads on the Ariane 5 afterbody. In: 6th International Symposium on Launcher Technologies. Munich, Germany 8-11 November (2005) David, S., Radulovic, S.: Prediction of buffet loads on the Ariane 5 afterbody. In: 6th International Symposium on Launcher Technologies. Munich, Germany 8-11 November (2005)
23.
Zurück zum Zitat Fares, E., Schröder, W.: A general one-equation turbulence model for free shear and wall-bounded flows. Flow Turbul. Combust. 73, 187–215 (2004)CrossRef Fares, E., Schröder, W.: A general one-equation turbulence model for free shear and wall-bounded flows. Flow Turbul. Combust. 73, 187–215 (2004)CrossRef
24.
Zurück zum Zitat Statnikov, V., Sayadi, T., Meinke, M., Schmid, P., Schröder, W.: Analysis of pressure perturbation sources on a generic space launcher after-body in supersonic flow using zonal turbulence modeling and dynamic mode decomposition. Phys. Fluids, 27(016103) (2015)CrossRef Statnikov, V., Sayadi, T., Meinke, M., Schmid, P., Schröder, W.: Analysis of pressure perturbation sources on a generic space launcher after-body in supersonic flow using zonal turbulence modeling and dynamic mode decomposition. Phys. Fluids, 27(016103) (2015)CrossRef
25.
Zurück zum Zitat Roidl, B., Meinke, M., Schröder, W.: A reformulated synthetic turbulence generation method for a zonal RANS-LES method and its application to zero-pressure gradient boundary layers. Int. J. Heat Fluid Flow 44, 28–40 (2013)CrossRef Roidl, B., Meinke, M., Schröder, W.: A reformulated synthetic turbulence generation method for a zonal RANS-LES method and its application to zero-pressure gradient boundary layers. Int. J. Heat Fluid Flow 44, 28–40 (2013)CrossRef
26.
Zurück zum Zitat Roidl, B., Meinke, M., Schröder, W.: Boundary layers affected by different pressure gradients investigated computationally by a zonal RANS-LES method. Int. J. Heat Fluid Flow 45, 1–13 (2014)CrossRef Roidl, B., Meinke, M., Schröder, W.: Boundary layers affected by different pressure gradients investigated computationally by a zonal RANS-LES method. Int. J. Heat Fluid Flow 45, 1–13 (2014)CrossRef
27.
Zurück zum Zitat Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 27, 585–593 (2006)CrossRef Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 27, 585–593 (2006)CrossRef
28.
Zurück zum Zitat Choi, H., Moin, P.: Grid-point requirements for large eddy simulation: Champan’s estimates revisited. Phys. Fluids, 24(011702) (2012)CrossRef Choi, H., Moin, P.: Grid-point requirements for large eddy simulation: Champan’s estimates revisited. Phys. Fluids, 24(011702) (2012)CrossRef
29.
Zurück zum Zitat Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)MathSciNetCrossRef Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)MathSciNetCrossRef
30.
Zurück zum Zitat Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V., Ukeiley, L.S.: Modal analysis of fluid flows: An overview. AIAA J (2017) Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V., Ukeiley, L.S.: Modal analysis of fluid flows: An overview. AIAA J (2017)
31.
Zurück zum Zitat Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)MathSciNetCrossRef Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)MathSciNetCrossRef
32.
Zurück zum Zitat Jovanovic, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting dynamic mode decomposition. Phys. Fluids, 26(024103) (2014)CrossRef Jovanovic, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting dynamic mode decomposition. Phys. Fluids, 26(024103) (2014)CrossRef
33.
Zurück zum Zitat Winant, C.D., Browand, F.K.: Vortex pairing: The mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63(2), 237–255 (1974)CrossRef Winant, C.D., Browand, F.K.: Vortex pairing: The mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63(2), 237–255 (1974)CrossRef
Metadaten
Titel
Numerical Investigation of Jet-Wake Interaction for a Dual-Bell Nozzle
verfasst von
Simon Loosen
Matthias Meinke
Wolfgang Schröder
Publikationsdatum
03.09.2019
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 2-3/2020
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-019-00056-6

Weitere Artikel der Ausgabe 2-3/2020

Flow, Turbulence and Combustion 2-3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.