Skip to main content

2018 | OriginalPaper | Buchkapitel

Numerical Investigation of the Temperature Distribution of a Solar Cavity Receiver Wall Using Finite Element Method

verfasst von : Suneet Kumar, Santosh B. Bopche

Erschienen in: Applications of Solar Energy

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The finite element method has been proved to be the effective numerical tool for finding approximate solutions of two or even up to three-dimensional governing differential equations. It has an ability to handle irregular geometries and any number of complicated boundary conditions with ease. The cavity receiver of a solar thermal system operates at a very high temperature. It may also cause larger energy losses from the cavity by radiation as well as convection as dominant modes of heat transfer. The collection efficiency depends on the useful heat gained by the working fluids, which is influenced by the receiver-energy losses. The energy losses from the cavity receiver depend on the cavity wall surface temperature. The temperature variation depends on the boundary conditions as well as geometrical orientation of the receiver. The knowledge of temperature distribution is one of the important factors needed for evolving an ideal design of a cavity receiver. The present chapter focuses on the design aspects as well as approximate estimation of wall temperature distribution of a cavity receiver of cylindrical shape. The step by step formulation of the problem using finite element method is also presented in the present chapter. The computational domain of a receiver wall is discretised into number of triangular elements and the simultaneous equations are solved using MATLAB.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jarvinen PO (1975) Solar-heated-air receivers. Sol Energy 19:139–147CrossRef Jarvinen PO (1975) Solar-heated-air receivers. Sol Energy 19:139–147CrossRef
2.
Zurück zum Zitat Strumpf HJ, Kotchick DM, Coombs MG (1982) High-Temperature ceramic heat exchanger element for a solar thermal receiver. Sol Energy Eng 104:305 Strumpf HJ, Kotchick DM, Coombs MG (1982) High-Temperature ceramic heat exchanger element for a solar thermal receiver. Sol Energy Eng 104:305
3.
Zurück zum Zitat Roger M, Buck R, Muller Steinhagen H (2005) Numerical and experimental investigation of a multiple Air Jet Cooling system for application in a solar thermal receiver. ASME J Heat Transf 127:863CrossRef Roger M, Buck R, Muller Steinhagen H (2005) Numerical and experimental investigation of a multiple Air Jet Cooling system for application in a solar thermal receiver. ASME J Heat Transf 127:863CrossRef
4.
Zurück zum Zitat Sauceda D, Velazquez1 N, Beltran R, Quintero M (2006) Thermal analysis of a conical receiver in a parabolloid dish to be used as generator in an advanced solar thermal cooling system. ASME, p 0019 Sauceda D, Velazquez1 N, Beltran R, Quintero M (2006) Thermal analysis of a conical receiver in a parabolloid dish to be used as generator in an advanced solar thermal cooling system. ASME, p 0019
5.
Zurück zum Zitat Kribus A, Doron P, Rubin R, Karni J, Reuven R, Duchan S, Taragan E (2000) A multistage solar receiver: the route to high temperature. Sol Energy 67:311 Kribus A, Doron P, Rubin R, Karni J, Reuven R, Duchan S, Taragan E (2000) A multistage solar receiver: the route to high temperature. Sol Energy 67:311
6.
Zurück zum Zitat Shuai Y, Xia X-L, Tan H-P (2008) Radiation performance of dish solar concentrator/cavity receiver systems. Sol Energy 82:13–21CrossRef Shuai Y, Xia X-L, Tan H-P (2008) Radiation performance of dish solar concentrator/cavity receiver systems. Sol Energy 82:13–21CrossRef
7.
Zurück zum Zitat Buck R, Barth C, Eck M, Steinmann W-D (2006) Dual-receiver concept for solar towers. Sol Energy 80:1249–1254CrossRef Buck R, Barth C, Eck M, Steinmann W-D (2006) Dual-receiver concept for solar towers. Sol Energy 80:1249–1254CrossRef
8.
Zurück zum Zitat Prakash M, Kedare SB, Nayak JK (2009) Investigations on heat losses from a solar cavity receiver. Sol Energy 83:157–170CrossRef Prakash M, Kedare SB, Nayak JK (2009) Investigations on heat losses from a solar cavity receiver. Sol Energy 83:157–170CrossRef
9.
Zurück zum Zitat Reddy KS, Sendhil Kumar N (2009) An improved model for natural convection heat loss from modified cavity receiver of solar dish concentrator. Sol Energy 83:1884–1892CrossRef Reddy KS, Sendhil Kumar N (2009) An improved model for natural convection heat loss from modified cavity receiver of solar dish concentrator. Sol Energy 83:1884–1892CrossRef
10.
Zurück zum Zitat Prakash M, Kedare SB, Nayak JK (2012) Numerical study of natural convection loss from open cavities. Int J Therm Sci 51:23–30CrossRef Prakash M, Kedare SB, Nayak JK (2012) Numerical study of natural convection loss from open cavities. Int J Therm Sci 51:23–30CrossRef
11.
Zurück zum Zitat Abbasi-Shavazia E, Hughesb GO, Pye JD (2015) Investigation of heat loss from a solar cavity receiver. Energy Procedia 69:269–278CrossRef Abbasi-Shavazia E, Hughesb GO, Pye JD (2015) Investigation of heat loss from a solar cavity receiver. Energy Procedia 69:269–278CrossRef
12.
Zurück zum Zitat Yuan JK, Ho CK (2015) Numerical simulation of natural convection in solar cavity receivers. J Sol Energy Eng 137:031004-1–10 Yuan JK, Ho CK (2015) Numerical simulation of natural convection in solar cavity receivers. J Sol Energy Eng 137:031004-1–10
13.
Zurück zum Zitat Cao Y (2013) Heat pipe solar receivers for concentrating solar power (CSP) plants. In: Proceedings of the ASME 2013 7th international conference on energy sustainability ES2013, pp 1–8 Cao Y (2013) Heat pipe solar receivers for concentrating solar power (CSP) plants. In: Proceedings of the ASME 2013 7th international conference on energy sustainability ES2013, pp 1–8
14.
Zurück zum Zitat Bannister P, Mayer IF (1997) Developmental solar thermal receiver studies for the white cliffs solar thermal power plant. J Sol Energy Eng 119:61–67CrossRef Bannister P, Mayer IF (1997) Developmental solar thermal receiver studies for the white cliffs solar thermal power plant. J Sol Energy Eng 119:61–67CrossRef
15.
Zurück zum Zitat Affandi R, Ruddin M, Ghani A, Ghan CK, Pheng LG (2015) The impact of the solar irradiation, collector and the receiver to the receiver losses in parabolic dish system. World Conf Technol Innov Entrep Soc Behav Sci 195:2382–2390 Affandi R, Ruddin M, Ghani A, Ghan CK, Pheng LG (2015) The impact of the solar irradiation, collector and the receiver to the receiver losses in parabolic dish system. World Conf Technol Innov Entrep Soc Behav Sci 195:2382–2390
16.
Zurück zum Zitat Wang W, Laumert B (2017) Effect of cavity surface material on the concentrated solar flux distribution for an impinging receiver. Sol Energy Mater Sol Cells 161:177–182CrossRef Wang W, Laumert B (2017) Effect of cavity surface material on the concentrated solar flux distribution for an impinging receiver. Sol Energy Mater Sol Cells 161:177–182CrossRef
17.
Zurück zum Zitat Pozivil P, Agab V, Zagorskiyb A, Steinfeld A (2014) A pressurized air receiver for solar-driven gas turbines. Energy Procedia 49:498–503CrossRef Pozivil P, Agab V, Zagorskiyb A, Steinfeld A (2014) A pressurized air receiver for solar-driven gas turbines. Energy Procedia 49:498–503CrossRef
18.
Zurück zum Zitat Zheng Z-J, Li M-J, He Y-L (2015) Optimization of porous insert configuration in a central receiver tube for heat transfer enhancement. In: The 7th international conference on applied energy—ICAE2015, Energy Procedia, vol 75, pp 502–507 Zheng Z-J, Li M-J, He Y-L (2015) Optimization of porous insert configuration in a central receiver tube for heat transfer enhancement. In: The 7th international conference on applied energy—ICAE2015, Energy Procedia, vol 75, pp 502–507
19.
Zurück zum Zitat Lopez-Herraiz M, Fernandez AB, Martinez N, Gallas M (2017) Effect of the optical properties of the coating of a concentrated solar power central receiver on its thermal efficiency. Sol Energy Mater Sol Cells 159:66–72CrossRef Lopez-Herraiz M, Fernandez AB, Martinez N, Gallas M (2017) Effect of the optical properties of the coating of a concentrated solar power central receiver on its thermal efficiency. Sol Energy Mater Sol Cells 159:66–72CrossRef
20.
Zurück zum Zitat Reddy KS, Sendhil Kumar N (2008) Combined laminar natural convection and surface radiation heat transfer in a modified cavity receiver of solar parabolic dish. Int J Therm Sci 47:1647–1657CrossRef Reddy KS, Sendhil Kumar N (2008) Combined laminar natural convection and surface radiation heat transfer in a modified cavity receiver of solar parabolic dish. Int J Therm Sci 47:1647–1657CrossRef
21.
Zurück zum Zitat Wang Wujun, Wang Bo, Li Lifeng, Laumert Bjorn, Strand Torsten (2016) The effect of the cooling nozzle arrangement to the thermal performance of a solar impinging receiver. Sol Energy 131:222–234CrossRef Wang Wujun, Wang Bo, Li Lifeng, Laumert Bjorn, Strand Torsten (2016) The effect of the cooling nozzle arrangement to the thermal performance of a solar impinging receiver. Sol Energy 131:222–234CrossRef
22.
Zurück zum Zitat Uhlig R, Fleschb R, Gobereita B, Giulianoa S, Liedke P (2014) Strategies enhancing efficiency of cavity receivers. Energy Procedia 49:538–550CrossRef Uhlig R, Fleschb R, Gobereita B, Giulianoa S, Liedke P (2014) Strategies enhancing efficiency of cavity receivers. Energy Procedia 49:538–550CrossRef
Metadaten
Titel
Numerical Investigation of the Temperature Distribution of a Solar Cavity Receiver Wall Using Finite Element Method
verfasst von
Suneet Kumar
Santosh B. Bopche
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7206-2_4