Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3/2018

01.06.2018

Numerical Investigation of Turbulent Kinetic Energy Dynamics in Chemically-Reacting Homogeneous Turbulence

verfasst von: Paulo L. K. Paes, Yuan Xuan

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we investigate numerically the temporal evolution of Turbulent Kinetic Energy (TKE) of a chemically-reacting n-heptane and air mixture in statistically Homogeneous Isotropic Turbulence (HIT). Our specific focus is on the concurrent view of TKE evolution in both physical and scale (Fourier) spaces to identify the impact of reaction-induced heat release on turbulence. The simulation parameters are selected to represent the combustion characteristics of heavy hydrocarbon fuels under engine conditions. Results indicate that pressure dilatation work dominates the TKE evolution during the period of strong heat release and its dominance is attributed to the strong volumetric dilatation associated with the presence of reaction fronts in physical space. Viscous dissipation and viscous dilatation terms become much stronger with increasing heat release, primarily due to the increase in strain-rate and dilatation at the vicinity of the reaction fronts, but their magnitudes are still small compared to that of pressure dilatation work. In addition, the analysis in Fourier space shows that pressure dilatation work dominates the evolution of TKE not only in the mean, but also over a wide range of scales. The spectrum of pressure dilatation shows a power-law behavior, which is a direct consequence of the localized sheet-like reaction fronts in physical space. It is also shown that viscous dissipation spectrum initially removes kinetic energy at small scales when heat release is weak, but starts to remove kinetic energy at intermediate and later at large scales due to the presence of localized reaction fronts during the strong heat release period. More interestingly, it is observed that the inter-scale kinetic energy transfer spectrum moves energy from less dissipative scales (small scales) to scales where kinetic energy is more effectively removed by viscous dissipation work (large scales) during the period of strong heat release, which indicates possible up-scale kinetic energy transfer in Fourier space.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Peters, N.: Turbulent combustion. Cambridge University Press, Cambridge (2000)CrossRef Peters, N.: Turbulent combustion. Cambridge University Press, Cambridge (2000)CrossRef
2.
Zurück zum Zitat Haworth, D.C., Poinsot, T.J.: Numerical simulations of lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992)CrossRef Haworth, D.C., Poinsot, T.J.: Numerical simulations of lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992)CrossRef
3.
Zurück zum Zitat Trouvé, A., Poinsot, T.: The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994)MathSciNetCrossRef Trouvé, A., Poinsot, T.: The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994)MathSciNetCrossRef
4.
Zurück zum Zitat Driscoll, J.F.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Progress Energy Combust. Sci. 34(1), 91–134 (2008)CrossRef Driscoll, J.F.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Progress Energy Combust. Sci. 34(1), 91–134 (2008)CrossRef
5.
Zurück zum Zitat Tahry, S.H.E., Rutland, C., Ferziger, J.: Structure and propagation speeds of turbulent premixed flames—a numerical study. Combust. Flame 83(1), 155–173 (1991)CrossRef Tahry, S.H.E., Rutland, C., Ferziger, J.: Structure and propagation speeds of turbulent premixed flames—a numerical study. Combust. Flame 83(1), 155–173 (1991)CrossRef
6.
Zurück zum Zitat Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86(4), 311–332 (1991)CrossRef Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86(4), 311–332 (1991)CrossRef
7.
Zurück zum Zitat Bilger, R., Pope, S., Bray, K., Driscoll, J.: Paradigms in turbulent combustion research. Proc. Combust. Inst. 30(1), 21–42 (2005)CrossRef Bilger, R., Pope, S., Bray, K., Driscoll, J.: Paradigms in turbulent combustion research. Proc. Combust. Inst. 30(1), 21–42 (2005)CrossRef
8.
Zurück zum Zitat Jaberi, F.A., Livescu, D., Madnia, C.K.: Characteristics of chemically reacting compressible homogeneous turbulence. Phys. Fluids 12(5), 1189–1209 (2000)CrossRef Jaberi, F.A., Livescu, D., Madnia, C.K.: Characteristics of chemically reacting compressible homogeneous turbulence. Phys. Fluids 12(5), 1189–1209 (2000)CrossRef
9.
Zurück zum Zitat Martin, M.P., Candler, G.V.: Effect of chemical reactions on decaying isotropic turbulence. Phys. Fluids 10(7), 1715–1724 (1998)CrossRef Martin, M.P., Candler, G.V.: Effect of chemical reactions on decaying isotropic turbulence. Phys. Fluids 10(7), 1715–1724 (1998)CrossRef
10.
Zurück zum Zitat Lee, K., Girimaji, S.S.: Flow-thermodynamics interactions in decaying anisotropic compressible turbulence with imposed temperature fluctuations. Theor. Comput. Fluid Dyn. 27(1), 115–131 (2013)CrossRef Lee, K., Girimaji, S.S.: Flow-thermodynamics interactions in decaying anisotropic compressible turbulence with imposed temperature fluctuations. Theor. Comput. Fluid Dyn. 27(1), 115–131 (2013)CrossRef
11.
Zurück zum Zitat Lee, K., Yu, D., Girimaji, S.S.: Lattice boltzmann dns of decaying compressible isotropic turbulence with temperature fluctuations. Int. J. Comput. Fluid Dyn. 20(6), 401–413 (2006)CrossRef Lee, K., Yu, D., Girimaji, S.S.: Lattice boltzmann dns of decaying compressible isotropic turbulence with temperature fluctuations. Int. J. Comput. Fluid Dyn. 20(6), 401–413 (2006)CrossRef
12.
Zurück zum Zitat Veynante, D., Vervisch, L.: Turbulent combustion modeling. Progress Energy Combust. Sci. 28(3), 193–266 (2002)CrossRef Veynante, D., Vervisch, L.: Turbulent combustion modeling. Progress Energy Combust. Sci. 28(3), 193–266 (2002)CrossRef
13.
Zurück zum Zitat Knaus, R., Pantano, C.: On the effect of heat release in turbulence spectra of non-premixed reacting shear layers. J. Fluid Mech. 626, 67–109 (2009)CrossRef Knaus, R., Pantano, C.: On the effect of heat release in turbulence spectra of non-premixed reacting shear layers. J. Fluid Mech. 626, 67–109 (2009)CrossRef
14.
Zurück zum Zitat Kolla, H., Hawkes, E.R., Kerstein, A.R., Swaminathan, N., Chen, J.H.: On velocity and reactive scalar spectra in turbulent premixed flames. J. Fluid Mech. 754, 456–487 (2014)MathSciNetCrossRef Kolla, H., Hawkes, E.R., Kerstein, A.R., Swaminathan, N., Chen, J.H.: On velocity and reactive scalar spectra in turbulent premixed flames. J. Fluid Mech. 754, 456–487 (2014)MathSciNetCrossRef
15.
Zurück zum Zitat Towery, C.A.Z., Poludnenko, A.Y., Urzay, J., Ihme, M., Hamlington, P.E.: Spectral energy dynamics in premixed flames. Center for Turbulence Research Proceedings of the Summer Program, pp. 159–168 (2014) Towery, C.A.Z., Poludnenko, A.Y., Urzay, J., Ihme, M., Hamlington, P.E.: Spectral energy dynamics in premixed flames. Center for Turbulence Research Proceedings of the Summer Program, pp. 159–168 (2014)
16.
Zurück zum Zitat Towery, C.A.Z., Poludnenko, A.Y., Urzay, J., O’Brien, J., Ihme, M., Hamlington, P.E.: Spectral kinetic energy transfer in turbulent premixed reacting flows. Phys. Rev. E 93(053), 115 (2016) Towery, C.A.Z., Poludnenko, A.Y., Urzay, J., O’Brien, J., Ihme, M., Hamlington, P.E.: Spectral kinetic energy transfer in turbulent premixed reacting flows. Phys. Rev. E 93(053), 115 (2016)
17.
Zurück zum Zitat Menon, S.K., Boettcher, P.A., Ventura, B., Blanquart, G.: Hot surface ignition of n-hexane in air. Combust. Flame 163, 42–53 (2016)CrossRef Menon, S.K., Boettcher, P.A., Ventura, B., Blanquart, G.: Hot surface ignition of n-hexane in air. Combust. Flame 163, 42–53 (2016)CrossRef
18.
Zurück zum Zitat Blanquart, G., Pepiot-Desjardins, P., Pitsch, H.: Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combust. Flame 156(3), 588–607 (2009)CrossRef Blanquart, G., Pepiot-Desjardins, P., Pitsch, H.: Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combust. Flame 156(3), 588–607 (2009)CrossRef
19.
Zurück zum Zitat Narayanaswamy, K., Blanquart, G., Pitsch, H.: A consistent chemical mechanism for oxidation of substituted aromatic species. Combust. Flame 157(10), 1879–1898 (2010)CrossRef Narayanaswamy, K., Blanquart, G., Pitsch, H.: A consistent chemical mechanism for oxidation of substituted aromatic species. Combust. Flame 157(10), 1879–1898 (2010)CrossRef
20.
Zurück zum Zitat Pepiot-Desjardins, P., Pitsch, H.: An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust. Flame 154(1), 67–81 (2008)CrossRef Pepiot-Desjardins, P., Pitsch, H.: An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust. Flame 154(1), 67–81 (2008)CrossRef
21.
Zurück zum Zitat Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227(15), 7125–7159 (2008)MathSciNetCrossRef Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227(15), 7125–7159 (2008)MathSciNetCrossRef
22.
Zurück zum Zitat Verma, S., Xuan, Y., Blanquart, G.: An improved bounded semi-lagrangian scheme for the turbulent transport of passive scalars. J. Comput. Phys. 272, 1–22 (2014)MathSciNetCrossRef Verma, S., Xuan, Y., Blanquart, G.: An improved bounded semi-lagrangian scheme for the turbulent transport of passive scalars. J. Comput. Phys. 272, 1–22 (2014)MathSciNetCrossRef
23.
Zurück zum Zitat Xuan, Y., Blanquart, G.: Numerical modeling of sooting tendencies in a laminar co-flow diffusion flame. Combust. Flame 160(9), 1657–1666 (2013)CrossRef Xuan, Y., Blanquart, G.: Numerical modeling of sooting tendencies in a laminar co-flow diffusion flame. Combust. Flame 160(9), 1657–1666 (2013)CrossRef
24.
Zurück zum Zitat Xuan, Y., Blanquart, G., Mueller, M.E.: Modeling curvature effects in diffusion flames using a laminar flamelet model. Combust. Flame 161(5), 1294–1309 (2014)CrossRef Xuan, Y., Blanquart, G., Mueller, M.E.: Modeling curvature effects in diffusion flames using a laminar flamelet model. Combust. Flame 161(5), 1294–1309 (2014)CrossRef
25.
Zurück zum Zitat Carroll, P.L., Blanquart, G.: A proposed modification to lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25(105), 114 (2013) Carroll, P.L., Blanquart, G.: A proposed modification to lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25(105), 114 (2013)
26.
Zurück zum Zitat Carroll, P.L., Verma, S., Blanquart, G.: A novel forcing technique to simulate turbulent mixing in a decaying scalar field. Phys. Fluids 25(095), 102 (2013) Carroll, P.L., Verma, S., Blanquart, G.: A novel forcing technique to simulate turbulent mixing in a decaying scalar field. Phys. Fluids 25(095), 102 (2013)
27.
Zurück zum Zitat Mueller, M.E., Pitsch, H.: Les model for sooting turbulent nonpremixed flames. Combust. Flame 159(6), 2166–2180 (2012)CrossRef Mueller, M.E., Pitsch, H.: Les model for sooting turbulent nonpremixed flames. Combust. Flame 159(6), 2166–2180 (2012)CrossRef
28.
Zurück zum Zitat Savard, B., Xuan, Y., Bobbitt, B., Blanquart, G.: A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry. Journal of Computational Physics p. in press (2015) Savard, B., Xuan, Y., Bobbitt, B., Blanquart, G.: A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry. Journal of Computational Physics p. in press (2015)
29.
Zurück zum Zitat Xuan, Y., Blanquart, G.: Effects of aromatic chemistry-turbulence interactions on soot formation in a turbulent non-premixed flame. Proc. Combust. Inst. 35(2), 1911–1919 (2015)CrossRef Xuan, Y., Blanquart, G.: Effects of aromatic chemistry-turbulence interactions on soot formation in a turbulent non-premixed flame. Proc. Combust. Inst. 35(2), 1911–1919 (2015)CrossRef
30.
Zurück zum Zitat Lapointe, S.: Simulation of premixed hydrocarbon flames at high turbulence intensities. Ph.D. Thesis California Institute of Technology (2016) Lapointe, S.: Simulation of premixed hydrocarbon flames at high turbulence intensities. Ph.D. Thesis California Institute of Technology (2016)
31.
Zurück zum Zitat Regele, J., Rabinovitch, J., Colonius, T., Blanquart, G.: Unsteady effects in dense, high speed, particle laden flows. Int. J. Multiphase Flow 61, 1–13 (2014)CrossRef Regele, J., Rabinovitch, J., Colonius, T., Blanquart, G.: Unsteady effects in dense, high speed, particle laden flows. Int. J. Multiphase Flow 61, 1–13 (2014)CrossRef
32.
Zurück zum Zitat Herrmann, M., Blanquart, G., Raman, V.: Flux Corrected Finite Volume Scheme for Preserving Scalar Boundedness in Reacting Large-Eddy Simulations. AIAA J. 44(12), 2879–2886 (2006)CrossRef Herrmann, M., Blanquart, G., Raman, V.: Flux Corrected Finite Volume Scheme for Preserving Scalar Boundedness in Reacting Large-Eddy Simulations. AIAA J. 44(12), 2879–2886 (2006)CrossRef
33.
Zurück zum Zitat Batchelor, G.K.: The theory of homogeneous turbulence. Cambridge University Press, Cambridge (1953)MATH Batchelor, G.K.: The theory of homogeneous turbulence. Cambridge University Press, Cambridge (1953)MATH
34.
Zurück zum Zitat Davidson, P.: Turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford (2004)MATH Davidson, P.: Turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford (2004)MATH
35.
Zurück zum Zitat Dec, J., Sjöberg, M.: Isolating the effects of fuel chemistry on combustion phasing in an hcci engine and the potential of fuel stratification for ignition control. SAE Technical Paper, pp. 01–0557 (2004) Dec, J., Sjöberg, M.: Isolating the effects of fuel chemistry on combustion phasing in an hcci engine and the potential of fuel stratification for ignition control. SAE Technical Paper, pp. 01–0557 (2004)
36.
Zurück zum Zitat Rosales, C., Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties. Phys. Fluids 17(9), 095,106 (2005)MathSciNetCrossRef Rosales, C., Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties. Phys. Fluids 17(9), 095,106 (2005)MathSciNetCrossRef
37.
Zurück zum Zitat Pope, S.: Turbulent flows. Cambridge University Press, Cambridge (2000)CrossRef Pope, S.: Turbulent flows. Cambridge University Press, Cambridge (2000)CrossRef
38.
Zurück zum Zitat Yu, R., Yu, J., Bai, X.S.: An improved high-order scheme for dns of low mach number turbulent reacting flows based on stiff chemistry solver. J. Comput. Phys. 231 (16), 5504–5521 (2012)MathSciNetCrossRef Yu, R., Yu, J., Bai, X.S.: An improved high-order scheme for dns of low mach number turbulent reacting flows based on stiff chemistry solver. J. Comput. Phys. 231 (16), 5504–5521 (2012)MathSciNetCrossRef
39.
Zurück zum Zitat Jones, W.P.: Turbulence modeling and numerical solution methods for variable density and combusting flows. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, pp 309–374. Academic Press, London (1994) Jones, W.P.: Turbulence modeling and numerical solution methods for variable density and combusting flows. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, pp 309–374. Academic Press, London (1994)
40.
Zurück zum Zitat Sankaran, E.R., Hawkes Ramanan P.P.P.J.H.C.: Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: Ii. parametric study. Combust. Flame 145, 145–159 (2006)CrossRef Sankaran, E.R., Hawkes Ramanan P.P.P.J.H.C.: Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: Ii. parametric study. Combust. Flame 145, 145–159 (2006)CrossRef
41.
Zurück zum Zitat Yoo, C.S., Lu, T., Chen, J.H., Law, C.K.: Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study. Combust. Flame 158(9), 1727–1741 (2011)CrossRef Yoo, C.S., Lu, T., Chen, J.H., Law, C.K.: Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study. Combust. Flame 158(9), 1727–1741 (2011)CrossRef
42.
Zurück zum Zitat Yoo, C.S., Luo, Z., Lu, T., Kim, H., Chen, J.H.: A dns study of ignition characteristics of a lean iso-octane/air mixture under hcci and saci conditions. Proc. Combust. Inst. 34(2), 2985–2993 (2013)CrossRef Yoo, C.S., Luo, Z., Lu, T., Kim, H., Chen, J.H.: A dns study of ignition characteristics of a lean iso-octane/air mixture under hcci and saci conditions. Proc. Combust. Inst. 34(2), 2985–2993 (2013)CrossRef
43.
Zurück zum Zitat Temme, J., Wabel, T.M., Skiba, A.W., Driscoll, J.F.: Measurements of Premixed Turbulent Combustion Regimes of High Reynolds Number Flames. 53Rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida (2015) Temme, J., Wabel, T.M., Skiba, A.W., Driscoll, J.F.: Measurements of Premixed Turbulent Combustion Regimes of High Reynolds Number Flames. 53Rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida (2015)
44.
Zurück zum Zitat Li, Z., Li, B., Sun, Z., Bai, X., Aldén, M.: Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot plif imaging of ch, oh, and ch2o in a piloted premixed jet flame. Combust. Flame 157(6), 1087–1096 (2010)CrossRef Li, Z., Li, B., Sun, Z., Bai, X., Aldén, M.: Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot plif imaging of ch, oh, and ch2o in a piloted premixed jet flame. Combust. Flame 157(6), 1087–1096 (2010)CrossRef
45.
Zurück zum Zitat Domaradzki, J.A., Rogallo, R.S.: Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence. Phys. Fluids A: Fluid Dyn. 2(3), 413–426 (1990)CrossRef Domaradzki, J.A., Rogallo, R.S.: Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence. Phys. Fluids A: Fluid Dyn. 2(3), 413–426 (1990)CrossRef
Metadaten
Titel
Numerical Investigation of Turbulent Kinetic Energy Dynamics in Chemically-Reacting Homogeneous Turbulence
verfasst von
Paulo L. K. Paes
Yuan Xuan
Publikationsdatum
01.06.2018
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3/2018
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9937-z

Weitere Artikel der Ausgabe 3/2018

Flow, Turbulence and Combustion 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.