Skip to main content
Erschienen in: Journal of Scientific Computing 3/2018

09.11.2017

Numerical Method for Solving the Time-Fractional Dual-Phase-Lagging Heat Conduction Equation with the Temperature-Jump Boundary Condition

verfasst von: Cui-cui Ji, Weizhong Dai, Zhi-zhong Sun

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article proposes a new nanoscale heat transfer model based on the Caputo type fractional dual-phase-lagging (DPL) heat conduction equation with the temperature-jump boundary condition. The model is proved to be well-posed. A finite difference scheme based on the L1 approximation for the Caputo derivative is then presented for solving the fractional DPL model. Unconditional stability and convergence of the scheme are proved by using the discrete energy method. Three numerical examples are given to verify the accuracy of the scheme. Results show the convergence order to be \(O(\tau ^{2-\alpha }+h^2)\) , which coincides with the theoretical analysis. A simple nanoscale semiconductor silicon device is illustrated to show the applicability of the model. It is seen from the numerical result that when \(\alpha =1\), the fractional DPL reduces to the conventional DPL and the obtained peak temperature is almost identical to those obtained in the literature. However, when \(\alpha <1\), the model predicts a higher peak temperature level than that when \(\alpha =1\). In particular, when \(\alpha = 0.7\) and 0.9, an oscillatory temperature at the beginning is observed. This indicates that the fractional DPL model can be an excellent candidate for analyzing the temperature instability appearing in electronic nano-semiconductor devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mao, Y., Xu, M.: Lattice Boltzmann numerical analysis of heat transfer in nano-scale silicon films induced by ultra-fast laser heating. Int. J. Therm. Sci. 89, 210–221 (2015)CrossRef Mao, Y., Xu, M.: Lattice Boltzmann numerical analysis of heat transfer in nano-scale silicon films induced by ultra-fast laser heating. Int. J. Therm. Sci. 89, 210–221 (2015)CrossRef
2.
Zurück zum Zitat Ghazanfarian, J., Shomali, Z.: Investigation of dual-phase-lag heat conduction model in a nanoscale metal-oxide-semiconductor field-effect transistor. Int. J. Heat Mass Transf. 55, 6231–6237 (2012)CrossRef Ghazanfarian, J., Shomali, Z.: Investigation of dual-phase-lag heat conduction model in a nanoscale metal-oxide-semiconductor field-effect transistor. Int. J. Heat Mass Transf. 55, 6231–6237 (2012)CrossRef
3.
Zurück zum Zitat Shomali, Z., Abbassi, A.: Investigation of highly non-linear dual-phase-lag model in nanoscale solid argon with temperature-dependent properties. Int. J. Therm. Sci. 83, 56–67 (2014)CrossRef Shomali, Z., Abbassi, A.: Investigation of highly non-linear dual-phase-lag model in nanoscale solid argon with temperature-dependent properties. Int. J. Therm. Sci. 83, 56–67 (2014)CrossRef
4.
Zurück zum Zitat Nasri, F., Ben Aissa, M.F., Belmabrouk, H.: Effect of second-order temperature jump in metal-oxide-semiconductor field effect transistor with dual-phase-lag model. Microelectron. J. 46, 67–74 (2015)CrossRef Nasri, F., Ben Aissa, M.F., Belmabrouk, H.: Effect of second-order temperature jump in metal-oxide-semiconductor field effect transistor with dual-phase-lag model. Microelectron. J. 46, 67–74 (2015)CrossRef
5.
Zurück zum Zitat Ho, C.S., Liou, J.J., Chen, F.: An analytical MOSFET breakdown model including self-heat effect. Solid State Electron. 44, 125–131 (2000)CrossRef Ho, C.S., Liou, J.J., Chen, F.: An analytical MOSFET breakdown model including self-heat effect. Solid State Electron. 44, 125–131 (2000)CrossRef
6.
Zurück zum Zitat Liao, M., Gan, Z.: New insight on negative bias temperature instability degradation with drain bias of 28 nm high-K metal gate p-MOSFET devices. Microelectron. Reliab. 54, 2378–2382 (2014)CrossRef Liao, M., Gan, Z.: New insight on negative bias temperature instability degradation with drain bias of 28 nm high-K metal gate p-MOSFET devices. Microelectron. Reliab. 54, 2378–2382 (2014)CrossRef
7.
Zurück zum Zitat Kim, P., Shi, L., Majumdar, A., McEuen, P.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)CrossRef Kim, P., Shi, L., Majumdar, A., McEuen, P.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)CrossRef
8.
Zurück zum Zitat Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)CrossRef Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)CrossRef
9.
Zurück zum Zitat Tzou, D.Y.: Nonlocal behavior in phonon transport. Int. J. Heat Mass Transf. 54, 475–481 (2011)CrossRefMATH Tzou, D.Y.: Nonlocal behavior in phonon transport. Int. J. Heat Mass Transf. 54, 475–481 (2011)CrossRefMATH
10.
Zurück zum Zitat Allu, P., Mazumder, S.: Hybrid ballistic-diffusive solution to the frequency-dependent phonon Boltzmann transport equation. Int. J. Heat Mass Transf. 100, 165–177 (2016)CrossRef Allu, P., Mazumder, S.: Hybrid ballistic-diffusive solution to the frequency-dependent phonon Boltzmann transport equation. Int. J. Heat Mass Transf. 100, 165–177 (2016)CrossRef
11.
12.
Zurück zum Zitat Li, X.: Coarse-graining molecular dynamics models using an extended Galerkin projection. Int. J. Numer. Methods Eng. 99, 157–182 (2014)MathSciNetCrossRefMATH Li, X.: Coarse-graining molecular dynamics models using an extended Galerkin projection. Int. J. Numer. Methods Eng. 99, 157–182 (2014)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Cahill, D.G., Braun, P.V., Chen, G., Clarke, D.R., Fan, S., Goodson, K.E., Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., Maris, H.J., Phillpot, S.R., Pop, E., Shi, L.: Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014)CrossRef Cahill, D.G., Braun, P.V., Chen, G., Clarke, D.R., Fan, S., Goodson, K.E., Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., Maris, H.J., Phillpot, S.R., Pop, E., Shi, L.: Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014)CrossRef
14.
Zurück zum Zitat Saghatchi, R., Ghazanfarian, J.: A novel SPH method for the solution of dual-phase-lag model with temperature-jump boundary condition in nanoscale. Appl. Math. Model. 39, 1063–1073 (2015)MathSciNetCrossRef Saghatchi, R., Ghazanfarian, J.: A novel SPH method for the solution of dual-phase-lag model with temperature-jump boundary condition in nanoscale. Appl. Math. Model. 39, 1063–1073 (2015)MathSciNetCrossRef
15.
Zurück zum Zitat Tien, C.L., Majumdar, A., Gerner, F.M.: Microscale Energy Transport. Taylor and Francis, Abingdon (1998) Tien, C.L., Majumdar, A., Gerner, F.M.: Microscale Energy Transport. Taylor and Francis, Abingdon (1998)
16.
Zurück zum Zitat Zhang, Z.M.: Nano/Microscale Heat Transfer. McGraw Hill, New York (2007) Zhang, Z.M.: Nano/Microscale Heat Transfer. McGraw Hill, New York (2007)
17.
Zurück zum Zitat Mazumder, S., Majumdar, A.: Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transf. 123, 749–759 (2001)CrossRef Mazumder, S., Majumdar, A.: Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transf. 123, 749–759 (2001)CrossRef
18.
Zurück zum Zitat Lacroix, D., Joulain, K., Lemonnier, D.: Monte Carlo transient phonon transport in silicon and germanium at nanoscale. Phys. Rev. B 72, 1–11 (2005)CrossRef Lacroix, D., Joulain, K., Lemonnier, D.: Monte Carlo transient phonon transport in silicon and germanium at nanoscale. Phys. Rev. B 72, 1–11 (2005)CrossRef
19.
Zurück zum Zitat Jeng, M.S., Yang, R., Song, D., Chen, G.: Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation. J. Heat Transf. 130, 042410 (2008)CrossRef Jeng, M.S., Yang, R., Song, D., Chen, G.: Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation. J. Heat Transf. 130, 042410 (2008)CrossRef
20.
Zurück zum Zitat Mittal, A., Mazumder, S.: Monte Carlo study of phonon heat conduction in silicon thin films including contributions of optical phonons. J. Heat Transf. 132, 064305 (2010)CrossRef Mittal, A., Mazumder, S.: Monte Carlo study of phonon heat conduction in silicon thin films including contributions of optical phonons. J. Heat Transf. 132, 064305 (2010)CrossRef
21.
Zurück zum Zitat Peraud, J.P.M., Hadjiconstantinou, N.G.: Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations. Phys. Rev. B 84, 205331 (2011)CrossRef Peraud, J.P.M., Hadjiconstantinou, N.G.: Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations. Phys. Rev. B 84, 205331 (2011)CrossRef
22.
Zurück zum Zitat Escobar, R.A., Ghai, S.S., Jhon, M.S., Amon, C.H.: Multi-length and time scale thermal transport using the lattice Boltzmann method with applications to electronics cooling. Int. J. Heat Mass Transf. 49, 97–107 (2006)CrossRefMATH Escobar, R.A., Ghai, S.S., Jhon, M.S., Amon, C.H.: Multi-length and time scale thermal transport using the lattice Boltzmann method with applications to electronics cooling. Int. J. Heat Mass Transf. 49, 97–107 (2006)CrossRefMATH
23.
Zurück zum Zitat Nabovati, A., Sellan, D.P., Amon, C.A.: On the lattice Boltzmann method for phonon transport. J. Comput. Phys. 230, 5864–5876 (2011)MathSciNetCrossRefMATH Nabovati, A., Sellan, D.P., Amon, C.A.: On the lattice Boltzmann method for phonon transport. J. Comput. Phys. 230, 5864–5876 (2011)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Chen, G.: Ballistic-diffusive heat conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001)CrossRef Chen, G.: Ballistic-diffusive heat conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001)CrossRef
25.
Zurück zum Zitat Chen, G.: Ballistic-diffusive equations for transient heat conduction from nano to microscales. J. Heat Transf. 124, 320–328 (2002)CrossRef Chen, G.: Ballistic-diffusive equations for transient heat conduction from nano to microscales. J. Heat Transf. 124, 320–328 (2002)CrossRef
26.
Zurück zum Zitat Chen, G., Zeng, T.F.: Nonequilibrium phonon and electron transport in heterostructures and superlattices. Microscale Thermophys. Eng. 5, 71–88 (2001)CrossRef Chen, G., Zeng, T.F.: Nonequilibrium phonon and electron transport in heterostructures and superlattices. Microscale Thermophys. Eng. 5, 71–88 (2001)CrossRef
27.
Zurück zum Zitat Jiang, F., Sousa, A.C.M.: SPH numerical modeling for ballistic-diffusive heat conduction. Numer. Heat Transf. 50, 499–515 (2006)CrossRef Jiang, F., Sousa, A.C.M.: SPH numerical modeling for ballistic-diffusive heat conduction. Numer. Heat Transf. 50, 499–515 (2006)CrossRef
28.
Zurück zum Zitat Yang, R., Chen, G., Laroche, M., Taur, Y.: Simulation of nanoscale multidimensional transient heat conduction problems using ballistic-diffusive equations and phonon Boltzmann equation. J. Heat Transf. 127, 298–306 (2005)CrossRef Yang, R., Chen, G., Laroche, M., Taur, Y.: Simulation of nanoscale multidimensional transient heat conduction problems using ballistic-diffusive equations and phonon Boltzmann equation. J. Heat Transf. 127, 298–306 (2005)CrossRef
29.
Zurück zum Zitat Fixel, D.A., Hitchon, W.N.G.: Convective scheme solution of the Boltzmann transport equation for nanoscale semiconductor devices. J. Comput. Phys. 227, 1387–1410 (2007)CrossRefMATH Fixel, D.A., Hitchon, W.N.G.: Convective scheme solution of the Boltzmann transport equation for nanoscale semiconductor devices. J. Comput. Phys. 227, 1387–1410 (2007)CrossRefMATH
30.
Zurück zum Zitat Murhty, J.Y., Mathur, S.R.: Computation of sub-micron thermal transport using an unstructures finite volume method. J. Heat Transf. 124, 1176–1181 (2002)CrossRef Murhty, J.Y., Mathur, S.R.: Computation of sub-micron thermal transport using an unstructures finite volume method. J. Heat Transf. 124, 1176–1181 (2002)CrossRef
31.
Zurück zum Zitat Narumanchi, S.V.J., Murthy, J.Y., Amon, C.H.: Sub-micron heat transport model in silicon accounting for phonon dispersion and polarization. J. Heat Transf. 126, 946–955 (2004)CrossRef Narumanchi, S.V.J., Murthy, J.Y., Amon, C.H.: Sub-micron heat transport model in silicon accounting for phonon dispersion and polarization. J. Heat Transf. 126, 946–955 (2004)CrossRef
32.
Zurück zum Zitat Murthy, J.Y., Narumanchi, S.V.J., Pascual-Gutierrez, J.A., Wang, T., Ni, C., Mathur, S.R.: Review of multi-scale simulation in sub-micron heat transport. Int. J. Multiscale Comput. Eng. 3, 5–32 (2005)CrossRef Murthy, J.Y., Narumanchi, S.V.J., Pascual-Gutierrez, J.A., Wang, T., Ni, C., Mathur, S.R.: Review of multi-scale simulation in sub-micron heat transport. Int. J. Multiscale Comput. Eng. 3, 5–32 (2005)CrossRef
33.
Zurück zum Zitat Mittal, A., Mazumder, S.: Generalized ballistic-diffusive formulation and hybrid SN–PN solution of the Boltzmann transport equation for phonons for non-equilibrium heat conduction. J. Heat Transf. 133, 092402 (2011)CrossRef Mittal, A., Mazumder, S.: Generalized ballistic-diffusive formulation and hybrid SN–PN solution of the Boltzmann transport equation for phonons for non-equilibrium heat conduction. J. Heat Transf. 133, 092402 (2011)CrossRef
34.
Zurück zum Zitat Mittal, A., Mazumder, S.: Hybrid discrete ordinates-spherical harmonics solution to the Boltzmann transport equation for phonons for non-equilibrium heat conduction. J. Comput. Phys. 230, 6977–7001 (2011)MathSciNetCrossRefMATH Mittal, A., Mazumder, S.: Hybrid discrete ordinates-spherical harmonics solution to the Boltzmann transport equation for phonons for non-equilibrium heat conduction. J. Comput. Phys. 230, 6977–7001 (2011)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Loy, J.M., Murthy, J.Y., Singh, S.: A fast hybrid Fourier–Boltzmann transport equation solver for nongray phonon transport. J. Heat Transf. 135, 011008 (2013)CrossRef Loy, J.M., Murthy, J.Y., Singh, S.: A fast hybrid Fourier–Boltzmann transport equation solver for nongray phonon transport. J. Heat Transf. 135, 011008 (2013)CrossRef
36.
Zurück zum Zitat Wang, M., Yang, N., Guo, Z.Y.: Non-fourier heat conductions in nanomaterials. J. Appl. Phys. 110, 064310 (2011)CrossRef Wang, M., Yang, N., Guo, Z.Y.: Non-fourier heat conductions in nanomaterials. J. Appl. Phys. 110, 064310 (2011)CrossRef
37.
Zurück zum Zitat Li, W.X., Liu, T.Y., Liu, C.L.: Acoustic phonon thermal transport through a nanostructure. Chin. Phys. Lett. 23, 2522–2525 (2006)CrossRef Li, W.X., Liu, T.Y., Liu, C.L.: Acoustic phonon thermal transport through a nanostructure. Chin. Phys. Lett. 23, 2522–2525 (2006)CrossRef
38.
Zurück zum Zitat Liang, L.H., Li, B.W.: Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys. Rev. B. 73, 153303 (2006)CrossRef Liang, L.H., Li, B.W.: Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys. Rev. B. 73, 153303 (2006)CrossRef
39.
Zurück zum Zitat Ni, X., Zhang, G., Li, B.: Thermal conductivity and thermal rectification in unzipped carbon nanotubes. J. Phys. Condens. Matter. 23, 215301 (2011)CrossRef Ni, X., Zhang, G., Li, B.: Thermal conductivity and thermal rectification in unzipped carbon nanotubes. J. Phys. Condens. Matter. 23, 215301 (2011)CrossRef
40.
Zurück zum Zitat Alvarez, F.X., Jou, D.: Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes. Appl. Phys. Lett. 90, 083109 (2007)CrossRef Alvarez, F.X., Jou, D.: Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes. Appl. Phys. Lett. 90, 083109 (2007)CrossRef
41.
Zurück zum Zitat Alvarez, F.X., Jou, D.: Size and frequency dependence of effective thermal conductivity in nanosystems. J. Appl. Phys. 103, 094321 (2008)CrossRef Alvarez, F.X., Jou, D.: Size and frequency dependence of effective thermal conductivity in nanosystems. J. Appl. Phys. 103, 094321 (2008)CrossRef
42.
Zurück zum Zitat Alvarez, F.X., Jou, D., Sellitto, A.: Phonon hydrodynamics and phonon-boundary scattering in nanosystems. J. Appl. Phys. 105, 014317 (2009)CrossRef Alvarez, F.X., Jou, D., Sellitto, A.: Phonon hydrodynamics and phonon-boundary scattering in nanosystems. J. Appl. Phys. 105, 014317 (2009)CrossRef
43.
Zurück zum Zitat Guo, Z.Y.: Motion and transfer of thermal mass—thermal mass and thermal gas. J. Eng. Thermophys. 27, 631–634 (2006) Guo, Z.Y.: Motion and transfer of thermal mass—thermal mass and thermal gas. J. Eng. Thermophys. 27, 631–634 (2006)
44.
Zurück zum Zitat Cao, B.Y., Guo, Z.Y.: Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102, 053503 (2007)CrossRef Cao, B.Y., Guo, Z.Y.: Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102, 053503 (2007)CrossRef
45.
Zurück zum Zitat Guo, Z.Y.: New physical quantities in heat. J. Eng. Thermophys. 1, 112–114 (2008) Guo, Z.Y.: New physical quantities in heat. J. Eng. Thermophys. 1, 112–114 (2008)
46.
Zurück zum Zitat Wang, M., Guo, Z.Y.: Understanding of temperature and size dependences of effective thermal conductivity of nanotubes. Phys. Lett. A 374, 4312–4315 (2010)CrossRefMATH Wang, M., Guo, Z.Y.: Understanding of temperature and size dependences of effective thermal conductivity of nanotubes. Phys. Lett. A 374, 4312–4315 (2010)CrossRefMATH
47.
Zurück zum Zitat Tzou, D.Y., Guo, Z.Y.: Nonlocal behavior in thermal lagging. Int. J. Heat Therm. Sci. 49, 1133–1137 (2010)CrossRef Tzou, D.Y., Guo, Z.Y.: Nonlocal behavior in thermal lagging. Int. J. Heat Therm. Sci. 49, 1133–1137 (2010)CrossRef
48.
Zurück zum Zitat Tzou, D.Y.: A unified field approach for heat conduction from micro- and macro-scales. J. Heat Transf. 117, 8–16 (1995)CrossRef Tzou, D.Y.: A unified field approach for heat conduction from micro- and macro-scales. J. Heat Transf. 117, 8–16 (1995)CrossRef
49.
Zurück zum Zitat Tzou, D.Y.: The generalized lagging response in small-scale and high heating. Int. J. Heat Mass Transf. 38, 3231–3240 (1995)CrossRef Tzou, D.Y.: The generalized lagging response in small-scale and high heating. Int. J. Heat Mass Transf. 38, 3231–3240 (1995)CrossRef
50.
Zurück zum Zitat Tzou, D.Y.: Experimental support for the lagging response in heat propagation. AIAA J. Thermophys. Heat Transf. 9, 686–693 (1995)CrossRef Tzou, D.Y.: Experimental support for the lagging response in heat propagation. AIAA J. Thermophys. Heat Transf. 9, 686–693 (1995)CrossRef
51.
Zurück zum Zitat Tzou, D.Y.: Macro to Microscale Heat Transfer: The Lagging Behavior, 2nd edn. Wiley, New York (2015) Tzou, D.Y.: Macro to Microscale Heat Transfer: The Lagging Behavior, 2nd edn. Wiley, New York (2015)
52.
Zurück zum Zitat Ghazanfarian, J., Abbassi, A.: Effect of boundary phonon scattering on dual-phase-lag model to simulate micro- and nano-scale heat conduction. Int. J. Heat Mass Transf. 52, 3706–3711 (2009)CrossRefMATH Ghazanfarian, J., Abbassi, A.: Effect of boundary phonon scattering on dual-phase-lag model to simulate micro- and nano-scale heat conduction. Int. J. Heat Mass Transf. 52, 3706–3711 (2009)CrossRefMATH
53.
Zurück zum Zitat Basirat, H., Ghazanfarian, J., Forooghi, P.: Implementation of dual-phase-lagging model at different Knudsen numbers within slab heat transfer. In: Proceedings of the International Conference on Modeling and Simulation, Konia, Turkey, pp. 895–899 (2006) Basirat, H., Ghazanfarian, J., Forooghi, P.: Implementation of dual-phase-lagging model at different Knudsen numbers within slab heat transfer. In: Proceedings of the International Conference on Modeling and Simulation, Konia, Turkey, pp. 895–899 (2006)
54.
Zurück zum Zitat Ghazanfarian, J., Abbassi, A.: Investigation of 2D transient heat transfer under the effect of dual-phase-lagging model in a nanoscale geometry. Int. J. Thermophys. 33, 552–566 (2012)CrossRef Ghazanfarian, J., Abbassi, A.: Investigation of 2D transient heat transfer under the effect of dual-phase-lagging model in a nanoscale geometry. Int. J. Thermophys. 33, 552–566 (2012)CrossRef
55.
Zurück zum Zitat Dai, W., Han, F., Sun, Z.Z.: Accurate numerical method for solving dual-phase-lagging equation with temperature jump boundary condition in nanoheat conduction. Int. J. Heat Mass Transf. 64, 966–975 (2013)CrossRef Dai, W., Han, F., Sun, Z.Z.: Accurate numerical method for solving dual-phase-lagging equation with temperature jump boundary condition in nanoheat conduction. Int. J. Heat Mass Transf. 64, 966–975 (2013)CrossRef
56.
Zurück zum Zitat Sun, H., Du, R., Dai, W., Sun, Z.Z.: A high order accurate numerical method for solving two-dimensional dual-phase-lagging equation with temperature jump boundary condition in nanoheat conduction. Numer. Methods Partial Differ. Equ. 31, 1742–1768 (2015)MathSciNetCrossRefMATH Sun, H., Du, R., Dai, W., Sun, Z.Z.: A high order accurate numerical method for solving two-dimensional dual-phase-lagging equation with temperature jump boundary condition in nanoheat conduction. Numer. Methods Partial Differ. Equ. 31, 1742–1768 (2015)MathSciNetCrossRefMATH
57.
Zurück zum Zitat Sun, H., Sun, Z.Z., Dai, W.: A second-order finite difference scheme for solving the dual-phase-lagging equation in a double-layered nanoscale thin film. Numer. Methods Partial Differ. Equ. 33, 142–173 (2017)MathSciNetCrossRefMATH Sun, H., Sun, Z.Z., Dai, W.: A second-order finite difference scheme for solving the dual-phase-lagging equation in a double-layered nanoscale thin film. Numer. Methods Partial Differ. Equ. 33, 142–173 (2017)MathSciNetCrossRefMATH
58.
Zurück zum Zitat Awad, E.: On the generalized thermal lagging behavior. J. Therm. Stress. 35, 193–325 (2012)CrossRef Awad, E.: On the generalized thermal lagging behavior. J. Therm. Stress. 35, 193–325 (2012)CrossRef
59.
Zurück zum Zitat Sherief, H.H., EI-Sayed, A.M.A., EI-Latief, A.M.A.: Fractional order theory of thermoelasticity. Int. J. Solid Struct. 47, 269–275 (2010)CrossRefMATH Sherief, H.H., EI-Sayed, A.M.A., EI-Latief, A.M.A.: Fractional order theory of thermoelasticity. Int. J. Solid Struct. 47, 269–275 (2010)CrossRefMATH
60.
Zurück zum Zitat Mishra, T.N., Rai, K.N.: Numerical solution of FSPL heat conduction equation for analysis of thermal ptopagtion. Appl. Math. Comput. 273, 1006–1017 (2016)MathSciNet Mishra, T.N., Rai, K.N.: Numerical solution of FSPL heat conduction equation for analysis of thermal ptopagtion. Appl. Math. Comput. 273, 1006–1017 (2016)MathSciNet
61.
Zurück zum Zitat Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186, 286–293 (2007)MathSciNetMATH Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186, 286–293 (2007)MathSciNetMATH
62.
Zurück zum Zitat Caputo, M.: Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)CrossRef Caputo, M.: Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)CrossRef
63.
Zurück zum Zitat Alikhanov, A.A.: A priori estimates for solutions of boundary value problems for fractional-order equations. Differ. Equ. 46, 660–666 (2010)MathSciNetCrossRefMATH Alikhanov, A.A.: A priori estimates for solutions of boundary value problems for fractional-order equations. Differ. Equ. 46, 660–666 (2010)MathSciNetCrossRefMATH
64.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
65.
66.
Zurück zum Zitat Liao, H.L., Sun, Z.Z.: Maximum norm error estimates of efficient difference schemes for second-order wave equations. J. Comput. Appl. Math. 235, 2217–2233 (2011)MathSciNetCrossRefMATH Liao, H.L., Sun, Z.Z.: Maximum norm error estimates of efficient difference schemes for second-order wave equations. J. Comput. Appl. Math. 235, 2217–2233 (2011)MathSciNetCrossRefMATH
67.
Zurück zum Zitat Sun, Z.Z.: Numerical Methods for Partial Differential Equations, 2nd edn. Science Press, Beijing (2012) Sun, Z.Z.: Numerical Methods for Partial Differential Equations, 2nd edn. Science Press, Beijing (2012)
68.
Zurück zum Zitat Alikhanov, A.A.: Stability and convergence of difference schemes approximating a two-parameter nonlocal boundary value problem for time-fractional diffusion equation. Comput. Math. Model. 26, 252–272 (2015)MathSciNetCrossRefMATH Alikhanov, A.A.: Stability and convergence of difference schemes approximating a two-parameter nonlocal boundary value problem for time-fractional diffusion equation. Comput. Math. Model. 26, 252–272 (2015)MathSciNetCrossRefMATH
Metadaten
Titel
Numerical Method for Solving the Time-Fractional Dual-Phase-Lagging Heat Conduction Equation with the Temperature-Jump Boundary Condition
verfasst von
Cui-cui Ji
Weizhong Dai
Zhi-zhong Sun
Publikationsdatum
09.11.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0588-3

Weitere Artikel der Ausgabe 3/2018

Journal of Scientific Computing 3/2018 Zur Ausgabe