Skip to main content

2018 | OriginalPaper | Buchkapitel

3. Numerical Methods for Conduction-Type Phenomena

verfasst von : Bantwal R. Baliga, Iurii Lokhmanets, Massimo Cimmino

Erschienen in: Handbook of Thermal Science and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A variety of physical phenomena can be mathematically modeled using equations similar to those used to model heat conduction. In this sense, they can all be referred to as conduction-type phenomena. Numerical methods for solving the mathematical models of conduction-type phenomena are the subject of this chapter. The focus is on control-volume finite difference methods (formulated by combining ideas borrowed from finite volume and finite difference methods) and control-volume finite element methods (formulated by amalgamating concepts native to finite volume and finite element methods) for solving the mathematical models of steady and unsteady, multidimensional, conduction-type phenomena in single-phase isotropic materials contained within regular and irregular calculation domains. Concise presentations of the following topics are also included: validation and verification, a generalized Richardson extrapolation procedure for estimating grid-independent numerical solutions, and measures of error and order of accuracy. Finally, to demonstrate some key aspects of the topics covered in this chapter, the use of a control-volume finite element method to predict laminar fully developed Newtonian fluid flow in a straight eccentric annulus is presented and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Acharya S, Baliga BR, Karki K, Murthy JY, Prakash C, Vanka SP (2007) Pressure-based finite volume methods in computational fluid dynamics. ASME J Heat Transfer 129:407–424CrossRef Acharya S, Baliga BR, Karki K, Murthy JY, Prakash C, Vanka SP (2007) Pressure-based finite volume methods in computational fluid dynamics. ASME J Heat Transfer 129:407–424CrossRef
Zurück zum Zitat Amon CH (2000) Spectral element methods for unsteady fluid flow and heat transfer in complex geometries: methodology and applications, Chapter 3. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer, vol 2. Taylor & Francis, New York, pp 71–107 Amon CH (2000) Spectral element methods for unsteady fluid flow and heat transfer in complex geometries: methodology and applications, Chapter 3. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer, vol 2. Taylor & Francis, New York, pp 71–107
Zurück zum Zitat Baliga BR (1997) Control-volume finite element methods for fluid flow and heat transfer, Chapter 3. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer, vol 1. Taylor & Francis, New York, pp 97–135 Baliga BR (1997) Control-volume finite element methods for fluid flow and heat transfer, Chapter 3. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer, vol 1. Taylor & Francis, New York, pp 97–135
Zurück zum Zitat Baliga BR, Atabaki N (2006) Control-volume-based finite difference and finite element methods, Chapter 6. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 191–224 Baliga BR, Atabaki N (2006) Control-volume-based finite difference and finite element methods, Chapter 6. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 191–224
Zurück zum Zitat Baliga BR, Lokhmanets I (2016) Generalized Richardson extrapolation procedures for estimating grid-independent numerical solutions. Int J Numer Methods Heat Fluid Flow 26:1121–1144MathSciNetMATHCrossRef Baliga BR, Lokhmanets I (2016) Generalized Richardson extrapolation procedures for estimating grid-independent numerical solutions. Int J Numer Methods Heat Fluid Flow 26:1121–1144MathSciNetMATHCrossRef
Zurück zum Zitat Baliga BR, Patankar SV (1980) A new finite-element formulation for convection-diffusion problems. Numer Heat Transfer 3:393–409CrossRef Baliga BR, Patankar SV (1980) A new finite-element formulation for convection-diffusion problems. Numer Heat Transfer 3:393–409CrossRef
Zurück zum Zitat Batchelor GK (1967) Introduction to fluid dynamics. Cambridge University Press, CambridgeMATH Batchelor GK (1967) Introduction to fluid dynamics. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Bejan A (1984) Convection heat transfer. Wiley, New YorkMATH Bejan A (1984) Convection heat transfer. Wiley, New YorkMATH
Zurück zum Zitat Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley, New York Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley, New York
Zurück zum Zitat Bochev P, Peterson K, Gao X (2013) A new control volume finite element method for the stable and accurate solution of the drift-diffusion equations on general unstructured grids. Comp Meths Appl Mech Eng 254:126–145MathSciNetMATHCrossRef Bochev P, Peterson K, Gao X (2013) A new control volume finite element method for the stable and accurate solution of the drift-diffusion equations on general unstructured grids. Comp Meths Appl Mech Eng 254:126–145MathSciNetMATHCrossRef
Zurück zum Zitat Brebbia CA, Telles JCF, Worbel LC (1991) Boundary element techniques: theory and applications in engineering. Springer, New York Brebbia CA, Telles JCF, Worbel LC (1991) Boundary element techniques: theory and applications in engineering. Springer, New York
Zurück zum Zitat Briggs WL (1987) A multigrid tutorial. SIAM, PhiladelphiaMATH Briggs WL (1987) A multigrid tutorial. SIAM, PhiladelphiaMATH
Zurück zum Zitat Buluc A, Fineman JT, Frigo M, Gilbert JR, Leiserson CE (2009) Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks. In: Association for Computing Machinery (ACM), Symposium on Parallelism in Algorithms and Architectures (SPAA’09) Calgary, Alberta, Canada. pp 233–244 Buluc A, Fineman JT, Frigo M, Gilbert JR, Leiserson CE (2009) Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks. In: Association for Computing Machinery (ACM), Symposium on Parallelism in Algorithms and Architectures (SPAA’09) Calgary, Alberta, Canada. pp 233–244
Zurück zum Zitat Carey GF (1997) Computational grids, generation, adaptation, and solution strategies. Taylor & Francis, Washington, DCMATH Carey GF (1997) Computational grids, generation, adaptation, and solution strategies. Taylor & Francis, Washington, DCMATH
Zurück zum Zitat Carey GF (2006) Computational geometry, grid generation, and adaptive grids. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York Carey GF (2006) Computational geometry, grid generation, and adaptive grids. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York
Zurück zum Zitat Carslaw HS, Jaeger JC (1995) Conduction of heat in solids, 2nd edn. Oxford University Press, New YorkMATH Carslaw HS, Jaeger JC (1995) Conduction of heat in solids, 2nd edn. Oxford University Press, New YorkMATH
Zurück zum Zitat Celik I, Karatekin O (1997) Numerical experiments on application of Richardson extrapolation with nonuniform grids. ASME J Fluids Eng 119:584–590CrossRef Celik I, Karatekin O (1997) Numerical experiments on application of Richardson extrapolation with nonuniform grids. ASME J Fluids Eng 119:584–590CrossRef
Zurück zum Zitat Celik IB, Ghia U, Roache PJ (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. ASME J Fluids Eng 130:078001-1–078001-4 Celik IB, Ghia U, Roache PJ (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. ASME J Fluids Eng 130:078001-1–078001-4
Zurück zum Zitat Cimmino M, Baliga BR (2017) Evaluation of the interfacial conduction heat transfer coefficient in two-temperature macroscopic models of homogenous porous media using a fully developed unsteady microscopic model in periodic unit cells. Numer Heat Transfer, Part B 71:236–252CrossRef Cimmino M, Baliga BR (2017) Evaluation of the interfacial conduction heat transfer coefficient in two-temperature macroscopic models of homogenous porous media using a fully developed unsteady microscopic model in periodic unit cells. Numer Heat Transfer, Part B 71:236–252CrossRef
Zurück zum Zitat Comini G, Minkowycz WJ, Shyy W (1997) General algorithms for the finite element solution of incompressible flow problems using primitive variables, Chapter 4. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer, vol 1. Taylor & Francis, New York, pp 137–169 Comini G, Minkowycz WJ, Shyy W (1997) General algorithms for the finite element solution of incompressible flow problems using primitive variables, Chapter 4. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer, vol 1. Taylor & Francis, New York, pp 137–169
Zurück zum Zitat Cotta RM (1993) Integral transforms in computational heat and fluid flow. CRC Press, Boca RatonMATH Cotta RM (1993) Integral transforms in computational heat and fluid flow. CRC Press, Boca RatonMATH
Zurück zum Zitat Cotta RM, Mikhailov MD (1997) Heat conduction: lumped analysis, integral transforms, symbolic computation. Wiley, New York Cotta RM, Mikhailov MD (1997) Heat conduction: lumped analysis, integral transforms, symbolic computation. Wiley, New York
Zurück zum Zitat Cotta RM, Mikhailov MD (2006) Hybrid methods and symbolic computations, Chapter 16. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 493–522 Cotta RM, Mikhailov MD (2006) Hybrid methods and symbolic computations, Chapter 16. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 493–522
Zurück zum Zitat Courant R, Friedrichs K, Lewy H (1967) On the partial difference equations of mathematical physics (an English translation of their original 1928 paper in German). IBM J Res Dev 11:215–234MATHCrossRef Courant R, Friedrichs K, Lewy H (1967) On the partial difference equations of mathematical physics (an English translation of their original 1928 paper in German). IBM J Res Dev 11:215–234MATHCrossRef
Zurück zum Zitat Crank J (1984) Free and moving boundary problems. Oxford University Press, New YorkMATH Crank J (1984) Free and moving boundary problems. Oxford University Press, New YorkMATH
Zurück zum Zitat Crank J, Nicolson P (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc Camb Philol Soc 43:50–67. Reprinted (1996) in Adv Comput Math 6:207–226MathSciNetMATHCrossRef Crank J, Nicolson P (1947) A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc Camb Philol Soc 43:50–67. Reprinted (1996) in Adv Comput Math 6:207–226MathSciNetMATHCrossRef
Zurück zum Zitat Delleur J (1999) The handbook of groundwater engineering. CRC Press, Boca Raton Delleur J (1999) The handbook of groundwater engineering. CRC Press, Boca Raton
Zurück zum Zitat Demirdzic I, Muzaferija S, Peric M (1997) Advances in computation of heat transfer, fluid flow, and solid body deformation using finite volume approaches, Chapter 2. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer, vol 1. Taylor & Francis, New York, pp 59–96 Demirdzic I, Muzaferija S, Peric M (1997) Advances in computation of heat transfer, fluid flow, and solid body deformation using finite volume approaches, Chapter 2. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer, vol 1. Taylor & Francis, New York, pp 59–96
Zurück zum Zitat Duff IS, Erisman AM, Reid JK (1986) Direct methods for sparse matrices. Oxford University Press, New YorkMATH Duff IS, Erisman AM, Reid JK (1986) Direct methods for sparse matrices. Oxford University Press, New YorkMATH
Zurück zum Zitat Eça L, Hoekstra M (2009) Evaluation of numerical error estimation based on grid refinement studies with the method of the manufactured solutions. Comput Fluids 38:1580–1591MATHCrossRef Eça L, Hoekstra M (2009) Evaluation of numerical error estimation based on grid refinement studies with the method of the manufactured solutions. Comput Fluids 38:1580–1591MATHCrossRef
Zurück zum Zitat Eça L, Hoekstra M (2014) A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies. J Comp Physics 262:104–130MathSciNetMATHCrossRef Eça L, Hoekstra M (2014) A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies. J Comp Physics 262:104–130MathSciNetMATHCrossRef
Zurück zum Zitat Eckert ERG, Drake RM (1972) Analysis of heat and mass transfer. McGraw-Hill, New YorkMATH Eckert ERG, Drake RM (1972) Analysis of heat and mass transfer. McGraw-Hill, New YorkMATH
Zurück zum Zitat Elias SR, Stubley GD, Raithby GD (1997) An adaptive agglomeration method for additive correction multigrid. Int J Numer Methods Eng 40:887–903MATHCrossRef Elias SR, Stubley GD, Raithby GD (1997) An adaptive agglomeration method for additive correction multigrid. Int J Numer Methods Eng 40:887–903MATHCrossRef
Zurück zum Zitat Ferguson WJ (1995) A control-volume finite element numerical simulation of the high temperature drying of spruce. Dry Technol 13:607–634CrossRef Ferguson WJ (1995) A control-volume finite element numerical simulation of the high temperature drying of spruce. Dry Technol 13:607–634CrossRef
Zurück zum Zitat Ferguson WJ (1998) The control-volume finite element numerical solution technique applied to creep in softwoods. Int J Solids Struct 35:1325–1338MATHCrossRef Ferguson WJ (1998) The control-volume finite element numerical solution technique applied to creep in softwoods. Int J Solids Struct 35:1325–1338MATHCrossRef
Zurück zum Zitat Ferguson WJ, Turner IW (1995) A comparison of the finite element and control volume numerical solution techniques applied to timber drying problems below the boiling point. Int J Numer Methods Eng 38:451–467MATHCrossRef Ferguson WJ, Turner IW (1995) A comparison of the finite element and control volume numerical solution techniques applied to timber drying problems below the boiling point. Int J Numer Methods Eng 38:451–467MATHCrossRef
Zurück zum Zitat Ferguson WJ, Turner IW (1996) A control volume finite element numerical simulation of the drying of spruce. J Comp Physics 125:59–70MathSciNetMATHCrossRef Ferguson WJ, Turner IW (1996) A control volume finite element numerical simulation of the drying of spruce. J Comp Physics 125:59–70MathSciNetMATHCrossRef
Zurück zum Zitat Ferziger JH, Peric M (2002) Computational methods for fluid dynamics, 3rd rev. edn. Springer, New YorkMATHCrossRef Ferziger JH, Peric M (2002) Computational methods for fluid dynamics, 3rd rev. edn. Springer, New YorkMATHCrossRef
Zurück zum Zitat Finlayson BA (1972) The method of weighted residuals and variational principles. Academic Press, New YorkMATH Finlayson BA (1972) The method of weighted residuals and variational principles. Academic Press, New YorkMATH
Zurück zum Zitat George A, Liu JW (1981) Computer solution of sparse positive definite systems. Prentice-Hall, Englewood CliffsMATH George A, Liu JW (1981) Computer solution of sparse positive definite systems. Prentice-Hall, Englewood CliffsMATH
Zurück zum Zitat Gresho PM, Sani RL, Engleman MS (2000) Incompressible flow and the finite element method: vol. 2, Isothermal laminar flow. Wiley, New YorkMATH Gresho PM, Sani RL, Engleman MS (2000) Incompressible flow and the finite element method: vol. 2, Isothermal laminar flow. Wiley, New YorkMATH
Zurück zum Zitat Haji-Sheik A, Howell JR (2006) Monte Carlo methods, Chapter 8. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 249–295 Haji-Sheik A, Howell JR (2006) Monte Carlo methods, Chapter 8. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 249–295
Zurück zum Zitat Haji-Sheik A, Sparrow EM (1967) The solution of heat conduction problems by probability methods. ASME J Heat Transfer 89:121–131CrossRef Haji-Sheik A, Sparrow EM (1967) The solution of heat conduction problems by probability methods. ASME J Heat Transfer 89:121–131CrossRef
Zurück zum Zitat Hetu JF, Pelletier DH (1992) Adaptive remeshing for viscous incompressible flows. AIAA J 30:1986–1992MATHCrossRef Hetu JF, Pelletier DH (1992) Adaptive remeshing for viscous incompressible flows. AIAA J 30:1986–1992MATHCrossRef
Zurück zum Zitat Hunt JC (1998) Lewis Fry Richardson and his contributions to mathematics, meteorology, and models of conflict. Ann Rev Fluid Mech 30:xiii–xxxviMathSciNetCrossRef Hunt JC (1998) Lewis Fry Richardson and his contributions to mathematics, meteorology, and models of conflict. Ann Rev Fluid Mech 30:xiii–xxxviMathSciNetCrossRef
Zurück zum Zitat Hutchinson BR, Raithby GD (1986) A multigrid method based on the additive correction strategy. Numer Heat Transfer 9:511–537CrossRef Hutchinson BR, Raithby GD (1986) A multigrid method based on the additive correction strategy. Numer Heat Transfer 9:511–537CrossRef
Zurück zum Zitat Idelsohn SR, Onate E (1994) Finite volumes and finite elements: two good friends. Int J Numer Methods Fluids 37:3323–3341MATHCrossRef Idelsohn SR, Onate E (1994) Finite volumes and finite elements: two good friends. Int J Numer Methods Fluids 37:3323–3341MATHCrossRef
Zurück zum Zitat Incropera FP, DeWitt DP (2002) Fundamentals of heat and mass transfer, 5th edn. Wiley, New York Incropera FP, DeWitt DP (2002) Fundamentals of heat and mass transfer, 5th edn. Wiley, New York
Zurück zum Zitat Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New YorkMATH Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New YorkMATH
Zurück zum Zitat Jayantha PA, Turner IW (2003) A second-order finite volume technique for simulating transport in anisotropic media. Int J Numer Methods Heat Fluid Flow 13:31–56MATHCrossRef Jayantha PA, Turner IW (2003) A second-order finite volume technique for simulating transport in anisotropic media. Int J Numer Methods Heat Fluid Flow 13:31–56MATHCrossRef
Zurück zum Zitat Jayantha PA, Turner IW (2005) A second-order control-volume finite-element least-squares strategy for simulating diffusion in strongly anisotropic media. J Comput Math 23:1–16MathSciNetMATH Jayantha PA, Turner IW (2005) A second-order control-volume finite-element least-squares strategy for simulating diffusion in strongly anisotropic media. J Comput Math 23:1–16MathSciNetMATH
Zurück zum Zitat Jothiprasad G, Mavriplis DJ, Caughey DA (2003) Higher-order time integration schemes for the unsteady Navier-Stokes equations on unstructured grids. J Comp Physics 191:542–566MATHCrossRef Jothiprasad G, Mavriplis DJ, Caughey DA (2003) Higher-order time integration schemes for the unsteady Navier-Stokes equations on unstructured grids. J Comp Physics 191:542–566MATHCrossRef
Zurück zum Zitat Kassab AJ, Wrobel LC, Bialecki RA, Divo EA (2006) Boundary-element method, Chapter 4. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 125–165 Kassab AJ, Wrobel LC, Bialecki RA, Divo EA (2006) Boundary-element method, Chapter 4. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 125–165
Zurück zum Zitat Kattoura S, Lamoureux A, Baliga BR (2013) A control-volume finite element method for the prediction of three-dimensional diffusion-type phenomena in anisotropic media. Comput Therm Sci 5:249–260CrossRef Kattoura S, Lamoureux A, Baliga BR (2013) A control-volume finite element method for the prediction of three-dimensional diffusion-type phenomena in anisotropic media. Comput Therm Sci 5:249–260CrossRef
Zurück zum Zitat Kays WM, Crawford ME (1993) Convective heat and mass transfer, 3rd edn. McGraw-Hill, New York Kays WM, Crawford ME (1993) Convective heat and mass transfer, 3rd edn. McGraw-Hill, New York
Zurück zum Zitat Kim D, Choi H (2000) A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids. J Comp Physics 162:411–428MathSciNetMATHCrossRef Kim D, Choi H (2000) A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids. J Comp Physics 162:411–428MathSciNetMATHCrossRef
Zurück zum Zitat Lahrman A (1992) An element formulation for the classical finite difference and finite volume methods applied to arbitrarily shaped domains. Int J Numer Methods Eng 35:893–913CrossRef Lahrman A (1992) An element formulation for the classical finite difference and finite volume methods applied to arbitrarily shaped domains. Int J Numer Methods Eng 35:893–913CrossRef
Zurück zum Zitat Lamoureux A, Baliga BR (2011) Improved formulations of the discretized pressure equation and boundary treatments in co-located equal-order control-volume finite-element methods for incompressible fluid flow. Numer Heat Transfer, Part B 59:442–472CrossRef Lamoureux A, Baliga BR (2011) Improved formulations of the discretized pressure equation and boundary treatments in co-located equal-order control-volume finite-element methods for incompressible fluid flow. Numer Heat Transfer, Part B 59:442–472CrossRef
Zurück zum Zitat Lamoureux A, Baliga BR (2015) Hybrid numerical methods combining discretized multidimensional and segmented-quasi-one-dimensional models for simulating thermofluid systems. Int J Numer Methods Heat Fluid Flow 25:1404–1425CrossRef Lamoureux A, Baliga BR (2015) Hybrid numerical methods combining discretized multidimensional and segmented-quasi-one-dimensional models for simulating thermofluid systems. Int J Numer Methods Heat Fluid Flow 25:1404–1425CrossRef
Zurück zum Zitat LeDain-Muir B (1983) A control-volume finite element method for three-dimensional elliptic fluid flow and heat transfer. M. Eng. Thesis, Department of mechanical Engineering, McGill University, Montreal LeDain-Muir B (1983) A control-volume finite element method for three-dimensional elliptic fluid flow and heat transfer. M. Eng. Thesis, Department of mechanical Engineering, McGill University, Montreal
Zurück zum Zitat LeDain-Muir B, Baliga BR (1986) Solution of three-dimensional convection-diffusion problems using tetrahedral elements and flow-oriented upwind interpolation functions. Num Heat Transfer 9:143–162CrossRef LeDain-Muir B, Baliga BR (1986) Solution of three-dimensional convection-diffusion problems using tetrahedral elements and flow-oriented upwind interpolation functions. Num Heat Transfer 9:143–162CrossRef
Zurück zum Zitat Leonard BP (1997) Bounded higher-order upwind multidimensional finite-volume convection-diffusion algorithms, Chapter 1. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer, vol 1. Taylor & Francis, New York, pp 1–57 Leonard BP (1997) Bounded higher-order upwind multidimensional finite-volume convection-diffusion algorithms, Chapter 1. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer, vol 1. Taylor & Francis, New York, pp 1–57
Zurück zum Zitat Lewis RW, Morgan K, Thomas HR, Seetharamu KN (1996) The finite element method in heat transfer analysis. Wiley, ChichesterMATH Lewis RW, Morgan K, Thomas HR, Seetharamu KN (1996) The finite element method in heat transfer analysis. Wiley, ChichesterMATH
Zurück zum Zitat Liu GR (2002) Mesh free methods: moving beyond the finite element method. CRC Press, Boca RatonCrossRef Liu GR (2002) Mesh free methods: moving beyond the finite element method. CRC Press, Boca RatonCrossRef
Zurück zum Zitat Maliska CR, Raithby GD (1984) A method for computing three-dimensional flows using non-orthogonal boundary-fitted coordinates. Int J Numer Methods Fluids 4:519–537MATHCrossRef Maliska CR, Raithby GD (1984) A method for computing three-dimensional flows using non-orthogonal boundary-fitted coordinates. Int J Numer Methods Fluids 4:519–537MATHCrossRef
Zurück zum Zitat Masson C, Saabas HJ, Baliga BR (1994) Co-located equal-order control-volume finite element method for two-dimensional axisymmetric incompressible flow. Int J Numer Methods Fluids 18:1–26MATHCrossRef Masson C, Saabas HJ, Baliga BR (1994) Co-located equal-order control-volume finite element method for two-dimensional axisymmetric incompressible flow. Int J Numer Methods Fluids 18:1–26MATHCrossRef
Zurück zum Zitat Mathur SR, Murthy JY (2000) Unstructured finite volume methods for multi-mode heat transfer, Chapter 2. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer, vol 2. Taylor & Francis, New York, pp 37–69 Mathur SR, Murthy JY (2000) Unstructured finite volume methods for multi-mode heat transfer, Chapter 2. In: Minkowycz WJ, Sparrow EM (eds) Advances in numerical heat transfer, vol 2. Taylor & Francis, New York, pp 37–69
Zurück zum Zitat Mavriplis DJ (2000) Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes. Int J Numer Methods Fluids 34:93–111MATHCrossRef Mavriplis DJ (2000) Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes. Int J Numer Methods Fluids 34:93–111MATHCrossRef
Zurück zum Zitat Mikhailov MD, Ozisik MN (1981) On general solution of heat conduction in an anisotropic medium. Int Commun Heat Mass Transfer 8:329–335 Mikhailov MD, Ozisik MN (1981) On general solution of heat conduction in an anisotropic medium. Int Commun Heat Mass Transfer 8:329–335
Zurück zum Zitat Mikhailov MD, Ozisik MN (1984) Unified analysis and solutions of heat and mass diffusion. Wiley, New York Mikhailov MD, Ozisik MN (1984) Unified analysis and solutions of heat and mass diffusion. Wiley, New York
Zurück zum Zitat Minkowycz WJ, Sparrow EM, Murthy JY (2006) Handbook of numerical teat transfer, 2nd edn. Wiley, New York Minkowycz WJ, Sparrow EM, Murthy JY (2006) Handbook of numerical teat transfer, 2nd edn. Wiley, New York
Zurück zum Zitat Murthy JY, Mathur SR (1998) Computation of anisotropic conduction using unstructured meshes. ASME J Heat Transfer 120:583–591CrossRef Murthy JY, Mathur SR (1998) Computation of anisotropic conduction using unstructured meshes. ASME J Heat Transfer 120:583–591CrossRef
Zurück zum Zitat Oberkampf WL, Roy CJ (2010) Verification and validation in scientific computing. Cambridge University Press, CambridgeMATHCrossRef Oberkampf WL, Roy CJ (2010) Verification and validation in scientific computing. Cambridge University Press, CambridgeMATHCrossRef
Zurück zum Zitat Ozisik MN (1980) Heat conduction – theory and applications. Wiley, New York Ozisik MN (1980) Heat conduction – theory and applications. Wiley, New York
Zurück zum Zitat Ozisik MN (2017) Finite difference methods in heat transfer, 2nd edn. CRC Press, Boca RatonMATHCrossRef Ozisik MN (2017) Finite difference methods in heat transfer, 2nd edn. CRC Press, Boca RatonMATHCrossRef
Zurück zum Zitat Ozisik MN, Shouman SM (1980) Transient heat conduction in an anisotropic medium in cylindrical coordinates. J Frankl Inst 309:457–472MathSciNetMATHCrossRef Ozisik MN, Shouman SM (1980) Transient heat conduction in an anisotropic medium in cylindrical coordinates. J Frankl Inst 309:457–472MathSciNetMATHCrossRef
Zurück zum Zitat Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington, DCMATHCrossRef Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington, DCMATHCrossRef
Zurück zum Zitat Pelletier D, Roache PJ (2006) Verification and validation of computational heat transfer, Chapter 13. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 417–442 Pelletier D, Roache PJ (2006) Verification and validation of computational heat transfer, Chapter 13. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 417–442
Zurück zum Zitat Pepper DW (2006) Meshless methods, Chapter 7. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 225–247 Pepper DW (2006) Meshless methods, Chapter 7. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 225–247
Zurück zum Zitat Pepper DW, Lombardo JM (2006) High-performance computing for fluid flow and heat transfer, Chapter 27. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 895–920 Pepper DW, Lombardo JM (2006) High-performance computing for fluid flow and heat transfer, Chapter 27. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 895–920
Zurück zum Zitat Perre P, Degiovanni A (1990) Control-volume formulation of simultaneous transfers in anisotropic porous media simulations of softwood drying at low and high temperature. Int J Heat Mass Transf 33:2463–2478MATHCrossRef Perre P, Degiovanni A (1990) Control-volume formulation of simultaneous transfers in anisotropic porous media simulations of softwood drying at low and high temperature. Int J Heat Mass Transf 33:2463–2478MATHCrossRef
Zurück zum Zitat Piercy NAV, Hooper MS, Winny HF (1933) Viscous flow through pipes with cores. London Edinburgh Dublin Philos Mag J Sci 15–7:647–676MATHCrossRef Piercy NAV, Hooper MS, Winny HF (1933) Viscous flow through pipes with cores. London Edinburgh Dublin Philos Mag J Sci 15–7:647–676MATHCrossRef
Zurück zum Zitat Piller M, Stalio E (2011) Development of a mixed control volume – finite element method for the advection-diffusion equation with spectral convergence. Comput Fluids 40:269–279MathSciNetMATHCrossRef Piller M, Stalio E (2011) Development of a mixed control volume – finite element method for the advection-diffusion equation with spectral convergence. Comput Fluids 40:269–279MathSciNetMATHCrossRef
Zurück zum Zitat Pletcher RH (2006) Finite-difference method, Chapter 2. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 53–90 Pletcher RH (2006) Finite-difference method, Chapter 2. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 53–90
Zurück zum Zitat Plumb OA, Spolek GA, Olmstead BA (1985) Heat and mass transfer in wood during drying. Int J Heat Mass Transf 28:1669–1678CrossRef Plumb OA, Spolek GA, Olmstead BA (1985) Heat and mass transfer in wood during drying. Int J Heat Mass Transf 28:1669–1678CrossRef
Zurück zum Zitat Reddy JN, Gartling DK (2001) The finite element method in heat transfer and fluid dynamics, 2nd edn. CRC Press, Boca RatonMATH Reddy JN, Gartling DK (2001) The finite element method in heat transfer and fluid dynamics, 2nd edn. CRC Press, Boca RatonMATH
Zurück zum Zitat Richardson LF (1910) The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Trans R Soc Lond A 210:307–357MATHCrossRef Richardson LF (1910) The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Trans R Soc Lond A 210:307–357MATHCrossRef
Zurück zum Zitat Richardson LF, Gaunt JA (1927) The deferred approach to the limit. Part I. Single lattice. Part II. Interpenetrating lattices. Trans R Soc Lond A 226:299–361CrossRef Richardson LF, Gaunt JA (1927) The deferred approach to the limit. Part I. Single lattice. Part II. Interpenetrating lattices. Trans R Soc Lond A 226:299–361CrossRef
Zurück zum Zitat Roache PJ (1976) Computational fluid dynamics, Rev edn. Hermosa Publisher, AlbuquerqueMATH Roache PJ (1976) Computational fluid dynamics, Rev edn. Hermosa Publisher, AlbuquerqueMATH
Zurück zum Zitat Roache PJ (1997) Quantification of uncertainty in computational fluid dynamics. Ann Rev Fluid Mech 29–1:123–160MathSciNetCrossRef Roache PJ (1997) Quantification of uncertainty in computational fluid dynamics. Ann Rev Fluid Mech 29–1:123–160MathSciNetCrossRef
Zurück zum Zitat Roache PJ (1998) Verification and validation in computational science and engineering. Hermosa Publishers, Albuquerque Roache PJ (1998) Verification and validation in computational science and engineering. Hermosa Publishers, Albuquerque
Zurück zum Zitat Roache PJ (2002) Code verification by the method of manufactured solutions. ASME J Fluids Eng 124:4–10CrossRef Roache PJ (2002) Code verification by the method of manufactured solutions. ASME J Fluids Eng 124:4–10CrossRef
Zurück zum Zitat Roy CJ, Sinclair AJ (2009) On the generation of exact solutions for evaluating numerical schemes and estimating discretization error. J Comp Physics 228:1790–1802MATHCrossRef Roy CJ, Sinclair AJ (2009) On the generation of exact solutions for evaluating numerical schemes and estimating discretization error. J Comp Physics 228:1790–1802MATHCrossRef
Zurück zum Zitat Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaMATHCrossRef Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaMATHCrossRef
Zurück zum Zitat Sebben S, Baliga BR (1995) Some extensions of tridiagonal and pentadiagonal matrix algorithms. Numer Heat Transfer, Part B 28:323–351CrossRef Sebben S, Baliga BR (1995) Some extensions of tridiagonal and pentadiagonal matrix algorithms. Numer Heat Transfer, Part B 28:323–351CrossRef
Zurück zum Zitat Shah RK, London AL (1978) Laminar flow forced convection in ducts. Advances in heat transfer, supplement 1. Academic Press, New York Shah RK, London AL (1978) Laminar flow forced convection in ducts. Advances in heat transfer, supplement 1. Academic Press, New York
Zurück zum Zitat Shyy W (2006) Moving-boundary problems, Chapter 18. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 559–592 Shyy W (2006) Moving-boundary problems, Chapter 18. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 559–592
Zurück zum Zitat Shyy W, Vu TC (1991) On the adoption of velocity variable and grid system for fluid flow computation in curvilinear coordinates. J Comp Physics 92:82–105MATHCrossRef Shyy W, Vu TC (1991) On the adoption of velocity variable and grid system for fluid flow computation in curvilinear coordinates. J Comp Physics 92:82–105MATHCrossRef
Zurück zum Zitat Stern F, Wilson RV, Coleman HW, Paterson EG (2001) Comprehensive approach to verification and validation of CFD simulations – Part 1: methodology and procedures. ASME J Fluids Eng 123:793–802CrossRef Stern F, Wilson RV, Coleman HW, Paterson EG (2001) Comprehensive approach to verification and validation of CFD simulations – Part 1: methodology and procedures. ASME J Fluids Eng 123:793–802CrossRef
Zurück zum Zitat Traiano RM, Cotta RM, Orlande HRB (1997) Improved approximate formulations for anisotropic heat conduction. Int Commun Heat Mass Transf 24:869–878CrossRef Traiano RM, Cotta RM, Orlande HRB (1997) Improved approximate formulations for anisotropic heat conduction. Int Commun Heat Mass Transf 24:869–878CrossRef
Zurück zum Zitat Truscott SL, Turner IW (2004) An investigation of the accuracy of the control-volume finite element method based on triangular elements for simulating diffusion in anisotropic media. Numer Heat Transfer, Part B 46:243–268CrossRef Truscott SL, Turner IW (2004) An investigation of the accuracy of the control-volume finite element method based on triangular elements for simulating diffusion in anisotropic media. Numer Heat Transfer, Part B 46:243–268CrossRef
Zurück zum Zitat Turner IW, Ferguson WJ (1995) An unstructured mesh cell-centered control volume method for simulating heat and mass transfer in porous media: application to softwood drying – Part 2: the anisotropic model. J Appl Math Model 19:669–674MATH Turner IW, Ferguson WJ (1995) An unstructured mesh cell-centered control volume method for simulating heat and mass transfer in porous media: application to softwood drying – Part 2: the anisotropic model. J Appl Math Model 19:669–674MATH
Zurück zum Zitat Van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13:631–644MathSciNetMATHCrossRef Van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13:631–644MathSciNetMATHCrossRef
Zurück zum Zitat Veluri SP, Roy CJ, Luke EA (2012) Comprehensive code verification techniques for finite volume CFD codes. Comput Fluids 70:59–72MathSciNetMATHCrossRef Veluri SP, Roy CJ, Luke EA (2012) Comprehensive code verification techniques for finite volume CFD codes. Comput Fluids 70:59–72MathSciNetMATHCrossRef
Zurück zum Zitat Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method. Longman Scientific & Technical, Harlow Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method. Longman Scientific & Technical, Harlow
Zurück zum Zitat Voller VR (2006) Numerical methods for phase-change problems, Chapter 19. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 593–622 Voller VR (2006) Numerical methods for phase-change problems, Chapter 19. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd edn. Wiley, New York, pp 593–622
Zurück zum Zitat Whitaker S (1999) The method of volume averaging. Kluwer Academic, BostonCrossRef Whitaker S (1999) The method of volume averaging. Kluwer Academic, BostonCrossRef
Zurück zum Zitat White FM (1991) Viscous fluid flow, 2nd edn. McGraw-Hill, New York White FM (1991) Viscous fluid flow, 2nd edn. McGraw-Hill, New York
Zurück zum Zitat Wilkinson J, Reinsch C (1971) Linear algebra. In: Handbook for automatic computation, vol 2. Springer, New YorkCrossRef Wilkinson J, Reinsch C (1971) Linear algebra. In: Handbook for automatic computation, vol 2. Springer, New YorkCrossRef
Zurück zum Zitat Williams JA (2005) Engineering tribology. Cambridge University Press, New YorkCrossRef Williams JA (2005) Engineering tribology. Cambridge University Press, New YorkCrossRef
Zurück zum Zitat Zienkiewicz OC, Taylor RL (2000) The finite element method: vol 3, Fluid dynamics, 5th edn. McGraw-Hill, LondonMATH Zienkiewicz OC, Taylor RL (2000) The finite element method: vol 3, Fluid dynamics, 5th edn. McGraw-Hill, LondonMATH
Zurück zum Zitat Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int J Numer Methods Eng 33:1365–1382MATHCrossRef Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int J Numer Methods Eng 33:1365–1382MATHCrossRef
Metadaten
Titel
Numerical Methods for Conduction-Type Phenomena
verfasst von
Bantwal R. Baliga
Iurii Lokhmanets
Massimo Cimmino
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-26695-4_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.