Skip to main content

2013 | OriginalPaper | Buchkapitel

2. Numerical Modeling and Simulations

verfasst von : Efstathios E. Stathis Michaelides

Erschienen in: Heat and Mass Transfer in Particulate Suspensions

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The design of engineering processes and equipment was traditionally accomplished in the past by experimentation, the construction of prototypes, and the building of pilot plants. These methods are time-consuming and labor-intensive and, in the beginning of the twenty-first century, have been proven to be very expensive. In the last two decades, modeling and computer simulations are increasingly used for the design of equipment and processes. The main advantage of computer simulations is that they require significantly less time and resources than the building, testing, and optimization of prototypes and pilot plants. The main disadvantage of simulations is that, oftentimes, the modeling does not accurately describe the actual engineering system to be built and some or all the testing results suffer from inaccuracies. This appears to be a temporary drawback to the simulation methods, because it is mainly due to the fact that numerical simulations are novel and recently developed methods in science and engineering. This chapter begins with sections on the desired attributes of mathematical models, in general, and continues with the four classifications of the coupling methods between the carrier fluid and the particles. A short description follows on the modeling of the flow of the carrier phase as laminar, turbulent, or transitional flow. A large part of the chapter is devoted to the methods of modeling of the suspension of particles as homogeneous mixture, point sources for momentum and energy transfer, discrete particles, or continua (two-fluid models). The complex interactions of particles with walls and the modeling of collision processes between particles and walls and between two or more particles are presented in detail. Finally the chapter examines critically the methods used most frequently for the numerical treatment of the boundaries in momentum and energy particle–fluid interactions, such as the Body-Fitted Coordinates, the Front Tracking Method, the Lattice Boltzmann Method, and the Immersed Boundary Method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In Eqs. (2.22) and (2.26) we follow the thermodynamic convention: Heat that enters the system (particle) is positive.
 
Literatur
Zurück zum Zitat Ashgriz N, Poo JY (1990) Coalescence and separation in binary collisions of liquid drops. J Fluid Mech 221:183–204CrossRef Ashgriz N, Poo JY (1990) Coalescence and separation in binary collisions of liquid drops. J Fluid Mech 221:183–204CrossRef
Zurück zum Zitat Boure JA, Delhaye J-M (1982) General equations and two-phase modeling. In: Gad H (ed) Handbook of multiphase systems. Hemisphere, New York Boure JA, Delhaye J-M (1982) General equations and two-phase modeling. In: Gad H (ed) Handbook of multiphase systems. Hemisphere, New York
Zurück zum Zitat Crowe CT, Sommerfeld M, Tsuji Y (1998) Multiphase flows with droplets and particles. CRC, Boca Raton, FL Crowe CT, Sommerfeld M, Tsuji Y (1998) Multiphase flows with droplets and particles. CRC, Boca Raton, FL
Zurück zum Zitat Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–54CrossRef Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–54CrossRef
Zurück zum Zitat Delhaye J-M (1981) Basic equations for two-phase modeling. In: Bergles AE, Collier JG, Delhaye J-M, Hewitt GF, Mayinger F (eds) Two-phase flow and heat transfer in the power and process industries. Hemisphere, New York Delhaye J-M (1981) Basic equations for two-phase modeling. In: Bergles AE, Collier JG, Delhaye J-M, Hewitt GF, Mayinger F (eds) Two-phase flow and heat transfer in the power and process industries. Hemisphere, New York
Zurück zum Zitat Ding J, Gidaspaw D (1990) A bubbling fluidization model using kinetic theory of granular flow. AIChE J 36:523–538CrossRef Ding J, Gidaspaw D (1990) A bubbling fluidization model using kinetic theory of granular flow. AIChE J 36:523–538CrossRef
Zurück zum Zitat Estrade JP, Carentz H, Laverne G, Biscos Y (1999) Experimental investigation of dynamic binary collision of ethanol droplets—a model for droplet coalescence and bouncing. Int J Heat Fluid Flow 20:486–491CrossRef Estrade JP, Carentz H, Laverne G, Biscos Y (1999) Experimental investigation of dynamic binary collision of ethanol droplets—a model for droplet coalescence and bouncing. Int J Heat Fluid Flow 20:486–491CrossRef
Zurück zum Zitat Feng Z-G, Michaelides EE (2001) Heat and mass transfer coefficients of viscous spheres. Int J Heat Mass Transf 44:4445–4454MATHCrossRef Feng Z-G, Michaelides EE (2001) Heat and mass transfer coefficients of viscous spheres. Int J Heat Mass Transf 44:4445–4454MATHCrossRef
Zurück zum Zitat Feng Z-G, Michaelides EE (2004) An immersed boundary method combined with lattice Boltzmann method for solving fluid and particles interaction problems. J Comput Phys 195:602–628MATHCrossRef Feng Z-G, Michaelides EE (2004) An immersed boundary method combined with lattice Boltzmann method for solving fluid and particles interaction problems. J Comput Phys 195:602–628MATHCrossRef
Zurück zum Zitat Feng Z-G, Michaelides EE (2005) Proteus—a direct forcing method in the simulation of particulate flows. J Comput Phys 202:20–51MATHCrossRef Feng Z-G, Michaelides EE (2005) Proteus—a direct forcing method in the simulation of particulate flows. J Comput Phys 202:20–51MATHCrossRef
Zurück zum Zitat Feng Z-G, Michaelides EE (2008) Inclusion of heat transfer computations for particle laden flows. Phys Fluids 20:1–10MATH Feng Z-G, Michaelides EE (2008) Inclusion of heat transfer computations for particle laden flows. Phys Fluids 20:1–10MATH
Zurück zum Zitat Feng Z-G, Michaelides EE (2009) Heat transfer in particulate flows with direct numerical simulation (DNS). Int J Heat Mass Transf 52:777–786MATHCrossRef Feng Z-G, Michaelides EE (2009) Heat transfer in particulate flows with direct numerical simulation (DNS). Int J Heat Mass Transf 52:777–786MATHCrossRef
Zurück zum Zitat Fogelson AL, Peskin CS (1988) A fast numerical method for solving the three-dimensional Stokes equation in the presence of suspended particles. J Comput Phys 79:50–69MathSciNetMATHCrossRef Fogelson AL, Peskin CS (1988) A fast numerical method for solving the three-dimensional Stokes equation in the presence of suspended particles. J Comput Phys 79:50–69MathSciNetMATHCrossRef
Zurück zum Zitat Frank T, Schade KP, Petrak D (1993) Numerical simulation and experimental investigation of gas-solid two phase flow in a horizontal channel. Int J Multiphase Flow 19:187–204MATHCrossRef Frank T, Schade KP, Petrak D (1993) Numerical simulation and experimental investigation of gas-solid two phase flow in a horizontal channel. Int J Multiphase Flow 19:187–204MATHCrossRef
Zurück zum Zitat Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equations. Phys Rev Lett 56:1505CrossRef Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equations. Phys Rev Lett 56:1505CrossRef
Zurück zum Zitat Frisch U, D’Humiéres D, Hasslacher B, Lallemand P, Pomeau Y, Rivert JP (1987) Lattice-gas hydrodynamics in two and three dimensions. Complex Syst 1:649–707MATH Frisch U, D’Humiéres D, Hasslacher B, Lallemand P, Pomeau Y, Rivert JP (1987) Lattice-gas hydrodynamics in two and three dimensions. Complex Syst 1:649–707MATH
Zurück zum Zitat Gan H, Chang JZ, Howard HH (2003) Direct numerical simulation of the sedimentation of solid particles with thermal convection. J Fluid Mech 481:385–411MATHCrossRef Gan H, Chang JZ, Howard HH (2003) Direct numerical simulation of the sedimentation of solid particles with thermal convection. J Fluid Mech 481:385–411MATHCrossRef
Zurück zum Zitat Glowinski R, Pan T-W, Hesla TI, Joseph DD, Periaux J (2001) A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J Comput Phys 169:363–426MathSciNetMATHCrossRef Glowinski R, Pan T-W, Hesla TI, Joseph DD, Periaux J (2001) A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J Comput Phys 169:363–426MathSciNetMATHCrossRef
Zurück zum Zitat Gosman AD, Ioannides E (1983) Aspects of computer simulation of liquid-fueled reactors. Energy 7:482–490CrossRef Gosman AD, Ioannides E (1983) Aspects of computer simulation of liquid-fueled reactors. Energy 7:482–490CrossRef
Zurück zum Zitat Hinze JO (1975) Turbulence. McGraw-Hill, New York Hinze JO (1975) Turbulence. McGraw-Hill, New York
Zurück zum Zitat Höfler K, Schwarzer S (2000) Navier-Stokes simulation with constraint forces: finite-difference method for particle-laden flows and complex geometries. Phys Rev E 61:7146–7160CrossRef Höfler K, Schwarzer S (2000) Navier-Stokes simulation with constraint forces: finite-difference method for particle-laden flows and complex geometries. Phys Rev E 61:7146–7160CrossRef
Zurück zum Zitat Ishii M (1975) Thermo-fluid dynamic theory of two-phase flows. Eyrolles, Paris Ishii M (1975) Thermo-fluid dynamic theory of two-phase flows. Eyrolles, Paris
Zurück zum Zitat Ishii M (1990) Two-fluid model for two-phase flow. In: Hewitt GF, Delhaye J-M, Zuber N (eds) Multiphase science and technology, vol 5. Hemisphere, New York, pp 1–63 Ishii M (1990) Two-fluid model for two-phase flow. In: Hewitt GF, Delhaye J-M, Zuber N (eds) Multiphase science and technology, vol 5. Hemisphere, New York, pp 1–63
Zurück zum Zitat Jenkins JT, Richman MW (1985) Grad’s 13-moment system for a dense gas of inelastic spheres. Arch Ration Mech Anal 87:355–377MathSciNetMATHCrossRef Jenkins JT, Richman MW (1985) Grad’s 13-moment system for a dense gas of inelastic spheres. Arch Ration Mech Anal 87:355–377MathSciNetMATHCrossRef
Zurück zum Zitat Kartushinsky A, Michaelides EE (2004) An analytical approach for the closure equations of gas-solid flows with inter-particle collisions. Int J Multiphase Flow 30:159–180MATHCrossRef Kartushinsky A, Michaelides EE (2004) An analytical approach for the closure equations of gas-solid flows with inter-particle collisions. Int J Multiphase Flow 30:159–180MATHCrossRef
Zurück zum Zitat Kim J, Choi H (2004) An immersed-boundary finite-volume method for simulations of heat transfer in complex geometries. Korean Soc Mech Eng Int J 18(6):1026–1035 Kim J, Choi H (2004) An immersed-boundary finite-volume method for simulations of heat transfer in complex geometries. Korean Soc Mech Eng Int J 18(6):1026–1035
Zurück zum Zitat Kollar LE, Farzaneh M, Karev AR (2005) Modeling droplet collision and coalescence in an icing wind tunnel and the influence of these processes on droplet size distribution. Int J Multiphase Flow 31:69–92MATHCrossRef Kollar LE, Farzaneh M, Karev AR (2005) Modeling droplet collision and coalescence in an icing wind tunnel and the influence of these processes on droplet size distribution. Int J Multiphase Flow 31:69–92MATHCrossRef
Zurück zum Zitat Ladd AJC (1994a) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271:285–310MathSciNetMATHCrossRef Ladd AJC (1994a) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271:285–310MathSciNetMATHCrossRef
Zurück zum Zitat Ladd AJC (1994b) Numerical simulations of particulate suspensions in a discretized Boltzmann equation Part II. Numerical results. J Fluid Mech 271:311–339MathSciNetCrossRef Ladd AJC (1994b) Numerical simulations of particulate suspensions in a discretized Boltzmann equation Part II. Numerical results. J Fluid Mech 271:311–339MathSciNetCrossRef
Zurück zum Zitat Manga M, Stone HA (1993) Buoyancy-driven interactions between two deformable viscous drops. J Fluid Mech 256:647–683MathSciNetCrossRef Manga M, Stone HA (1993) Buoyancy-driven interactions between two deformable viscous drops. J Fluid Mech 256:647–683MathSciNetCrossRef
Zurück zum Zitat Manga M, Stone HA (1995) Low Reynolds number motion of bubbles, drops and rigid spheres through fluid-fluid interfaces. J Fluid Mech 287:279–298MathSciNetCrossRef Manga M, Stone HA (1995) Low Reynolds number motion of bubbles, drops and rigid spheres through fluid-fluid interfaces. J Fluid Mech 287:279–298MathSciNetCrossRef
Zurück zum Zitat Marshall G (1986) A front tracking method for one-dimensional moving boundary problems. SIAM J Sci Stat Comput 7:252–263MATHCrossRef Marshall G (1986) A front tracking method for one-dimensional moving boundary problems. SIAM J Sci Stat Comput 7:252–263MATHCrossRef
Zurück zum Zitat McKenna TF, Spitz R, Cokljat D (1999) Heat transfer from catalysts with computational fluid dynamics. AIChE J 45:2392–2410CrossRef McKenna TF, Spitz R, Cokljat D (1999) Heat transfer from catalysts with computational fluid dynamics. AIChE J 45:2392–2410CrossRef
Zurück zum Zitat Michaelides EE (2003) Introduction and basic equations for multiphase flow. In: Buchlin J-M (ed) von Karman institute lecture series, 19–23 May 2003, Brussels, Belgium Michaelides EE (2003) Introduction and basic equations for multiphase flow. In: Buchlin J-M (ed) von Karman institute lecture series, 19–23 May 2003, Brussels, Belgium
Zurück zum Zitat Michaelides EE, Li L, Lasek A (1992) The effect of turbulence on the phase change of droplets and particles under non-equilibrium conditions. Int J Heat Mass Transf 34:2069–2076CrossRef Michaelides EE, Li L, Lasek A (1992) The effect of turbulence on the phase change of droplets and particles under non-equilibrium conditions. Int J Heat Mass Transf 34:2069–2076CrossRef
Zurück zum Zitat Morioka S, Nakajima T (1987) Modeling of gas and solid particles two-phase flow and application to fluidized bed. J Theor Appl Mech 6:77–88MATH Morioka S, Nakajima T (1987) Modeling of gas and solid particles two-phase flow and application to fluidized bed. J Theor Appl Mech 6:77–88MATH
Zurück zum Zitat Mostafa AA, Elghobashi SE (1985) A two-equation turbulence model for jet flows laden with vaporizing droplets. Int J Multiphase Flow 11:515–533CrossRef Mostafa AA, Elghobashi SE (1985) A two-equation turbulence model for jet flows laden with vaporizing droplets. Int J Multiphase Flow 11:515–533CrossRef
Zurück zum Zitat Nijemeisland M, Dixon AG (2004) CFD study of fluid flow and wall heat transfer in a fixed bed of spheres. AIChE J 50:906–921CrossRef Nijemeisland M, Dixon AG (2004) CFD study of fluid flow and wall heat transfer in a fixed bed of spheres. AIChE J 50:906–921CrossRef
Zurück zum Zitat Nobari MRH, Jan YJ, Tryggvason G (1996) Head on collisions of drops – a numerical investigation. Phys Fluids 8:29–42MATHCrossRef Nobari MRH, Jan YJ, Tryggvason G (1996) Head on collisions of drops – a numerical investigation. Phys Fluids 8:29–42MATHCrossRef
Zurück zum Zitat Orme M (1997) Experiments on droplet collisions bounce, coalescence and disruption. Prog Energy Combust Sci 23:65–79CrossRef Orme M (1997) Experiments on droplet collisions bounce, coalescence and disruption. Prog Energy Combust Sci 23:65–79CrossRef
Zurück zum Zitat Pacheco JR, Pacheco-Vega A, Rodic T, Peck RE (2005) Numerical simulations of heat transfer and fluid problems using an immersed-boundary finite-volume method on non-staggered grids. Numer Heat Transf B 48:1–24CrossRef Pacheco JR, Pacheco-Vega A, Rodic T, Peck RE (2005) Numerical simulations of heat transfer and fluid problems using an immersed-boundary finite-volume method on non-staggered grids. Numer Heat Transf B 48:1–24CrossRef
Zurück zum Zitat Patankar N, Ko T, Choi HG, Joseph DD (2001) A correlation for the lift-off of many particles in plane Poiseuille flows of Newtonian fluids. J Fluid Mech 445:55–76MATHCrossRef Patankar N, Ko T, Choi HG, Joseph DD (2001) A correlation for the lift-off of many particles in plane Poiseuille flows of Newtonian fluids. J Fluid Mech 445:55–76MATHCrossRef
Zurück zum Zitat Qian J, Law CK (1997) Regimes of coalescence and separation in droplet collisions. J Fluid Mech 331:59–80CrossRef Qian J, Law CK (1997) Regimes of coalescence and separation in droplet collisions. J Fluid Mech 331:59–80CrossRef
Zurück zum Zitat Reeks MW (1991) On a kinetic equation for the transport of particles in turbulent flows. Phys Fluids 3:446–456MATHCrossRef Reeks MW (1991) On a kinetic equation for the transport of particles in turbulent flows. Phys Fluids 3:446–456MATHCrossRef
Zurück zum Zitat Reeks MW, Simonin O (2006) PDF models. In: Multiphase flow handbook, sect. 13.4.3. CRC, Boca Raton, FL, pp 13-89–13-113 Reeks MW, Simonin O (2006) PDF models. In: Multiphase flow handbook, sect. 13.4.3. CRC, Boca Raton, FL, pp 13-89–13-113
Zurück zum Zitat Sakiz M, Simonin O (1999) Development and validation of continuum particle wall boundary conditions using Lagrangian simulations of a vertical gas-solids channel flow. In: Proceedings of 3rd ASME-JSME joint fluids engineering conference, San Francisco, CA Sakiz M, Simonin O (1999) Development and validation of continuum particle wall boundary conditions using Lagrangian simulations of a vertical gas-solids channel flow. In: Proceedings of 3rd ASME-JSME joint fluids engineering conference, San Francisco, CA
Zurück zum Zitat Simonin O (2001) Statistical and continuum modeling of turbulent reactive particulate flows- Part I: Theoretical derivation of dispersed phase Eulerian modeling from probability density function kinetic equation. In: Buchlin J-M (ed) von Karman institute lecture series. Buchlin, Brussels Simonin O (2001) Statistical and continuum modeling of turbulent reactive particulate flows- Part I: Theoretical derivation of dispersed phase Eulerian modeling from probability density function kinetic equation. In: Buchlin J-M (ed) von Karman institute lecture series. Buchlin, Brussels
Zurück zum Zitat Sirignano WA (1999) Fluid dynamics and transport of droplets and sprays. Cambridge University Press, CambridgeCrossRef Sirignano WA (1999) Fluid dynamics and transport of droplets and sprays. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Smagorinsky J (1963) General circulation experiments with the primitive equations, I. The basic experiment. Mon Weather Rev 91:99–152CrossRef Smagorinsky J (1963) General circulation experiments with the primitive equations, I. The basic experiment. Mon Weather Rev 91:99–152CrossRef
Zurück zum Zitat Sommerfeld M (2003) Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part I. Particle transport. Int J Multiphase Flow 29:675–699MATHCrossRef Sommerfeld M (2003) Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part I. Particle transport. Int J Multiphase Flow 29:675–699MATHCrossRef
Zurück zum Zitat Sommerfeld M, Huber N (1999) Experimental analysis and modelling of particle-wall collisions. Int J Multiphase Flow 25:1457–1489MATHCrossRef Sommerfeld M, Huber N (1999) Experimental analysis and modelling of particle-wall collisions. Int J Multiphase Flow 25:1457–1489MATHCrossRef
Zurück zum Zitat Taniere A, Khalij M, Oesterle B (2004) Focus on the disperse phase boundary conditions at the wall for irregular particle bouncing. Int J Multiphase Flow 30:675–699CrossRef Taniere A, Khalij M, Oesterle B (2004) Focus on the disperse phase boundary conditions at the wall for irregular particle bouncing. Int J Multiphase Flow 30:675–699CrossRef
Zurück zum Zitat Thompson JF, Warsi ZUA, Mastin CW (1982) Boundary-fitted coordinate systems for numerical solution of partial differential equations—a review. J Comput Phys 47:1–108MathSciNetMATHCrossRef Thompson JF, Warsi ZUA, Mastin CW (1982) Boundary-fitted coordinate systems for numerical solution of partial differential equations—a review. J Comput Phys 47:1–108MathSciNetMATHCrossRef
Zurück zum Zitat Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan Y-J (2001) A front-tracking method for the computations of multiphase flow. J Comput Phys 169:708–759MATHCrossRef Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan Y-J (2001) A front-tracking method for the computations of multiphase flow. J Comput Phys 169:708–759MATHCrossRef
Zurück zum Zitat Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation in a two dimensional fluidized bed. Powder Technol 77:79–86CrossRef Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation in a two dimensional fluidized bed. Powder Technol 77:79–86CrossRef
Zurück zum Zitat Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209:448–476MathSciNetMATHCrossRef Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209:448–476MathSciNetMATHCrossRef
Zurück zum Zitat Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100:25–37MATHCrossRef Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100:25–37MATHCrossRef
Zurück zum Zitat Wallis GB (1963) Some hydrodynamic aspects of two-phase flow and boiling. In: International developments in heat transfer. ASME, New York Wallis GB (1963) Some hydrodynamic aspects of two-phase flow and boiling. In: International developments in heat transfer. ASME, New York
Zurück zum Zitat Walsh STC, Burnwinkle H, Saar MO (2009) A new partial-bounce back lattice-Boltzmann method for fluid flow through heterogeneous media. Comput Geosci 35:1186–1193CrossRef Walsh STC, Burnwinkle H, Saar MO (2009) A new partial-bounce back lattice-Boltzmann method for fluid flow through heterogeneous media. Comput Geosci 35:1186–1193CrossRef
Zurück zum Zitat Warsi ZUA (1993) Fluid dynamics: theoretical and computational approaches. CRC, Boca Raton, FLMATH Warsi ZUA (1993) Fluid dynamics: theoretical and computational approaches. CRC, Boca Raton, FLMATH
Zurück zum Zitat Yu Z, Shao X, Wachs A (2006) A fictitious domain method for particulate flows with heat transfer. J Comput Phys 217:424–452MathSciNetMATHCrossRef Yu Z, Shao X, Wachs A (2006) A fictitious domain method for particulate flows with heat transfer. J Comput Phys 217:424–452MathSciNetMATHCrossRef
Zurück zum Zitat Zaichik LI, Vinberg AA (1991) Modeling of particle dynamics and heat transfer in turbulent flows using equations for first and second moments of velocity and temperature fluctuations. In: Proceedings of 8th international symposium on turbulent shear flows, Munich, FRG, vol 1, pp 1021–1026 Zaichik LI, Vinberg AA (1991) Modeling of particle dynamics and heat transfer in turbulent flows using equations for first and second moments of velocity and temperature fluctuations. In: Proceedings of 8th international symposium on turbulent shear flows, Munich, FRG, vol 1, pp 1021–1026
Metadaten
Titel
Numerical Modeling and Simulations
verfasst von
Efstathios E. Stathis Michaelides
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5854-8_2