Skip to main content
Erschienen in: Mechanics of Composite Materials 1/2020

12.03.2020

Numerical Modeling of Plastic Deformation of Unidirectionally Reinforced Composites

verfasst von: G. I. L’vov, O. A. Kostromitskaya

Erschienen in: Mechanics of Composite Materials | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A technique for the numerical homogenization of plastic deformation of unidirectionally reinforced composites is developed. A modification of Prandtl–Reuss theory that takes into account the influence of the first invariant of stress tensor is used as governing relations for an equivalent orthotropic material. The isotropic hardening is described by a function depending on the work of plastic deformation. A micromechanical analysis is performed on a representative cell by the finite-element method for the general case of triaxial stress state. Deformation diagrams and yield surfaces for carbon fiber plastics with a square packaging scheme of fibers are given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Hill, The Mathematical Theory of Plasticity, Oxford: Oxford Univ. Press (1950). R. Hill, The Mathematical Theory of Plasticity, Oxford: Oxford Univ. Press (1950).
2.
Zurück zum Zitat M. Vogler, R. Rolfes, and P. P. Camanho, “Modeling the inelastic deformation and fracture of polymer. Part I: Plasticity model,” Mech. Mater, 59, 50-64 (2013).CrossRef M. Vogler, R. Rolfes, and P. P. Camanho, “Modeling the inelastic deformation and fracture of polymer. Part I: Plasticity model,” Mech. Mater, 59, 50-64 (2013).CrossRef
3.
Zurück zum Zitat K. Naumenko and H. Altenbach, “Modeling high temperature materials behavior for structural analysis. Part I: Continuum mechanics foundations and constitutive models,” Cham: Springer: Advanced Structured Materials, 28 (2016). DOI: 10.1007/978-3-319-31629-1. K. Naumenko and H. Altenbach, “Modeling high temperature materials behavior for structural analysis. Part I: Continuum mechanics foundations and constitutive models,” Cham: Springer: Advanced Structured Materials, 28 (2016). DOI: 10.1007/978-3-319-31629-1.
4.
Zurück zum Zitat A. R. Melro, P. P. Camanho, F. M. Andrade Pires, and S. T. Pinho, “Micromechanical analysis of polymer composites reinforced by unidirectional fibers. Part I: Constitutive modelling,” Int. J. Solids Struct., 50, 1897-1905 (2013).CrossRef A. R. Melro, P. P. Camanho, F. M. Andrade Pires, and S. T. Pinho, “Micromechanical analysis of polymer composites reinforced by unidirectional fibers. Part I: Constitutive modelling,” Int. J. Solids Struct., 50, 1897-1905 (2013).CrossRef
5.
Zurück zum Zitat A. R. Melro, P. P. Camanho, F. M. Andrade Pires, and S. T. Pinho, “Micromechanical analysis of polymer composites reinforced by unidirectional fibers. Part II: Micromechanical analyses,” Int. J. Solids Struct., 50, 1906-1915 (2013).CrossRef A. R. Melro, P. P. Camanho, F. M. Andrade Pires, and S. T. Pinho, “Micromechanical analysis of polymer composites reinforced by unidirectional fibers. Part II: Micromechanical analyses,” Int. J. Solids Struct., 50, 1906-1915 (2013).CrossRef
6.
Zurück zum Zitat F. P. Van der Meer, “Micromechanical validation of a mesomodel for plasticity in composites,” Europ. J. Mech. A/Solids., 60, 58-69 (2016).CrossRef F. P. Van der Meer, “Micromechanical validation of a mesomodel for plasticity in composites,” Europ. J. Mech. A/Solids., 60, 58-69 (2016).CrossRef
7.
Zurück zum Zitat R. Bedzra, J. W. Reese, and J. W. Simon, “Meso-macro modeling of anisotropic metallic composites within the framework of multisurface plasticity,” Int. J. Solids Struct., 120, 186-198 (2017).CrossRef R. Bedzra, J. W. Reese, and J. W. Simon, “Meso-macro modeling of anisotropic metallic composites within the framework of multisurface plasticity,” Int. J. Solids Struct., 120, 186-198 (2017).CrossRef
8.
Zurück zum Zitat Y. J. Cho, W. J. Lee, and Y. H. Park, “Effect of boundary conditions on plasticity and creep behavior analysis of particle reinforced composites by representative volume element approach,” Comput. Mater. Sci., 100, Part A, 67-75 (2015). Y. J. Cho, W. J. Lee, and Y. H. Park, “Effect of boundary conditions on plasticity and creep behavior analysis of particle reinforced composites by representative volume element approach,” Comput. Mater. Sci., 100, Part A, 67-75 (2015).
9.
Zurück zum Zitat C. Hoffarth, S. D. Rajan, R. K. Goldberg, D. Revilock, K. S. Carney, P. DuBois, and G. Blankenhorn, “Implementation and validation of a three-dimensional plasticity-based deformation model for orthotropic composites,” Composites: Part A, 91, 336-350 (2016).CrossRef C. Hoffarth, S. D. Rajan, R. K. Goldberg, D. Revilock, K. S. Carney, P. DuBois, and G. Blankenhorn, “Implementation and validation of a three-dimensional plasticity-based deformation model for orthotropic composites,” Composites: Part A, 91, 336-350 (2016).CrossRef
10.
Zurück zum Zitat Y. K. Khdir, T. Kanit, F. Zaїri, and M. Naїt-Abdelaziz, “Computational homogenization of elastic-plastic composites,” Int. J. Solids Struct., 50, 2829-2835 (2013).CrossRef Y. K. Khdir, T. Kanit, F. Zaїri, and M. Naїt-Abdelaziz, “Computational homogenization of elastic-plastic composites,” Int. J. Solids Struct., 50, 2829-2835 (2013).CrossRef
11.
Zurück zum Zitat T. Laux, K. W. Gan, J. M. Dulieu-Barton, and O. T. Thomsen, “A simple nonlinear constitutive model based on nonassociative plasticity for UD composites: Development and calibration using a modified arcan fixture,” Int. J. Solids Struct., 162, 135-147 (2019).CrossRef T. Laux, K. W. Gan, J. M. Dulieu-Barton, and O. T. Thomsen, “A simple nonlinear constitutive model based on nonassociative plasticity for UD composites: Development and calibration using a modified arcan fixture,” Int. J. Solids Struct., 162, 135-147 (2019).CrossRef
12.
Zurück zum Zitat S. Marfia and E. Sacco, “Computational homogenization of composites experiencing plasticity, cracking and debonding phenomena,” Comput. Methods Appl. Mech. Eng., 304, 319-341 (2016).CrossRef S. Marfia and E. Sacco, “Computational homogenization of composites experiencing plasticity, cracking and debonding phenomena,” Comput. Methods Appl. Mech. Eng., 304, 319-341 (2016).CrossRef
13.
Zurück zum Zitat G. J. Dvorak, “Transformation field analysis of inelastic composite materials,” Proc. R. Soc. London, Ser. A, 437, 311-327 (1992). G. J. Dvorak, “Transformation field analysis of inelastic composite materials,” Proc. R. Soc. London, Ser. A, 437, 311-327 (1992).
14.
Zurück zum Zitat L. R. Meza, J. M. J. Schormans, J. J. C. Remmers, and V. S. Deshpande, “Shear response of 3D non-woven carbon fiber reinforced composites,” J. Mech. Phys. Solids., 125, 276-297 (2019).CrossRef L. R. Meza, J. M. J. Schormans, J. J. C. Remmers, and V. S. Deshpande, “Shear response of 3D non-woven carbon fiber reinforced composites,” J. Mech. Phys. Solids., 125, 276-297 (2019).CrossRef
15.
Zurück zum Zitat B. Nedjar, “Plasticity-based modeling of fiber/matrix debonding in unidirectional composites,” Compos. Struct., 108, 41-48 (2014).CrossRef B. Nedjar, “Plasticity-based modeling of fiber/matrix debonding in unidirectional composites,” Compos. Struct., 108, 41-48 (2014).CrossRef
16.
Zurück zum Zitat Z. Hashin, “On the elastic behaviour of fiber reinforced materials of arbitrary transverse phase geometry,” J. Mech. Phys. Solids., 13, No. 3, 119-134 (1965).CrossRef Z. Hashin, “On the elastic behaviour of fiber reinforced materials of arbitrary transverse phase geometry,” J. Mech. Phys. Solids., 13, No. 3, 119-134 (1965).CrossRef
17.
Zurück zum Zitat T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, No. 5, 571-574 (1973).CrossRef T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, No. 5, 571-574 (1973).CrossRef
18.
Zurück zum Zitat H. Singh, M. Gupta, and P. Mahajan, “Reduced order multiscale modeling of fiber reinforced polymer composites including plasticity and damage,” Mech. Mater., 111, 35-56 (2017).CrossRef H. Singh, M. Gupta, and P. Mahajan, “Reduced order multiscale modeling of fiber reinforced polymer composites including plasticity and damage,” Mech. Mater., 111, 35-56 (2017).CrossRef
19.
Zurück zum Zitat L. Zhang and W. Yu, “Variational asymptotic homogenization of elastoplastic composites,” Compos. Struct., 133, 947-958 (2015).CrossRef L. Zhang and W. Yu, “Variational asymptotic homogenization of elastoplastic composites,” Compos. Struct., 133, 947-958 (2015).CrossRef
20.
Zurück zum Zitat B. I. Miled, I. L. Doghri, L. Brassart, and L. Delannay, “Micromechanical modeling of coupled viscoelastic-viscoplastic composites based on an incrementally affine formulation,” Int. J. Solids Struct., 50, 1755-1769 (2013).CrossRef B. I. Miled, I. L. Doghri, L. Brassart, and L. Delannay, “Micromechanical modeling of coupled viscoelastic-viscoplastic composites based on an incrementally affine formulation,” Int. J. Solids Struct., 50, 1755-1769 (2013).CrossRef
21.
Zurück zum Zitat D. Tsalis, T Baxevanis., G. Chatzigeorgiou, and N Charalambakis, “Homogenization of elastoplastic composites with generalized periodicity in the microstructure,” Int. J. Plast., 51, 161-187 (2013). D. Tsalis, T Baxevanis., G. Chatzigeorgiou, and N Charalambakis, “Homogenization of elastoplastic composites with generalized periodicity in the microstructure,” Int. J. Plast., 51, 161-187 (2013).
22.
Zurück zum Zitat Q.-C. He and Z.-Q. Feng, “Homogenization of layered elastoplastic composites: Theoretical results,” Int. J. Non Linear Mech., 47, 367-376 (2012).CrossRef Q.-C. He and Z.-Q. Feng, “Homogenization of layered elastoplastic composites: Theoretical results,” Int. J. Non Linear Mech., 47, 367-376 (2012).CrossRef
23.
Zurück zum Zitat A. F. Fedotov, “Hybrid model for homogenization of the elastoplastic properties of isotropic matrix composites,” Mech. Compos. Mater., 53, No. 3, 361-372 (2017).CrossRef A. F. Fedotov, “Hybrid model for homogenization of the elastoplastic properties of isotropic matrix composites,” Mech. Compos. Mater., 53, No. 3, 361-372 (2017).CrossRef
24.
Zurück zum Zitat R. M. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New York-Chichester-Brisbane-Toronto (1979) R. M. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New York-Chichester-Brisbane-Toronto (1979)
26.
Zurück zum Zitat J. Małachowski, G. L’vov, and S. Daryazadeh, “Numerical prediction of the parameters of a yield criterion for fibrous composites,” Mech. Compos. Mater., 53, No. 5, 589-600 (2017).CrossRef J. Małachowski, G. L’vov, and S. Daryazadeh, “Numerical prediction of the parameters of a yield criterion for fibrous composites,” Mech. Compos. Mater., 53, No. 5, 589-600 (2017).CrossRef
27.
Zurück zum Zitat P. J. Hine, R. A. Duckett, A. S. Kaddour, M. J. Hinton, and G. M. Wells, “The effect of hydrostatic pressure on the mechanical properties of glass fiber/epoxy unidirectional composites,” Composites: Part A, 36, No. 2, 279-289 (2005). P. J. Hine, R. A. Duckett, A. S. Kaddour, M. J. Hinton, and G. M. Wells, “The effect of hydrostatic pressure on the mechanical properties of glass fiber/epoxy unidirectional composites,” Composites: Part A, 36, No. 2, 279-289 (2005).
28.
Zurück zum Zitat S Darya Zadeh. and G. I. L’vov, “Numerical procedure of determining the effective mechanical characteristics of an aligned fiber composite,” Strength Mater., 47, No. 4, 536-543 (2015). S Darya Zadeh. and G. I. L’vov, “Numerical procedure of determining the effective mechanical characteristics of an aligned fiber composite,” Strength Mater., 47, No. 4, 536-543 (2015).
29.
Zurück zum Zitat G. I. Lvov and O. A. Kostromitskaya, “Two-level computation of elastic characteristics of woven composites,” Mech. Compos. Mater., 54, No. 5, 577-590 (2018).CrossRef G. I. Lvov and O. A. Kostromitskaya, “Two-level computation of elastic characteristics of woven composites,” Mech. Compos. Mater., 54, No. 5, 577-590 (2018).CrossRef
30.
31.
Zurück zum Zitat V. A. Il’in and E. G. Poznyak, Linear Algebra [in Russian], – M., Nauka (1999). V. A. Il’in and E. G. Poznyak, Linear Algebra [in Russian], – M., Nauka (1999).
Metadaten
Titel
Numerical Modeling of Plastic Deformation of Unidirectionally Reinforced Composites
verfasst von
G. I. L’vov
O. A. Kostromitskaya
Publikationsdatum
12.03.2020
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 1/2020
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-020-09856-8

Weitere Artikel der Ausgabe 1/2020

Mechanics of Composite Materials 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.