Skip to main content

2017 | OriginalPaper | Buchkapitel

Numerical Optimization of ESA’s Messenger Space Mission Benchmark

verfasst von : Martin Schlueter, Mohamed Wahib, Masaharu Munetomo

Erschienen in: Applications of Evolutionary Computation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The design and optimization of interplanetary space mission trajectories is known to be a difficult challenge. The trajectory of the Messenger mission (launched by NASA in 2004) is one of the most complex ones ever created. The European Space Agency (ESA) makes available a numerical optimization benchmark which resembles an accurate model of Messengers full mission trajectory. This contribution presents an optimization approach which is capable to (robustly) solve ESA’s Messenger full mission benchmark to its putative global solution within 24 h run time on a moderate sized computer cluster. The considered algorithm, named MXHPC, is a parallelization framework for the MIDACO optimization algorithm which is an evolutionary method particularly suited for space trajectory design. The presented results demonstrate the effectiveness of evolutionary computing for complex real-world problems which have been previously considered intractable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that this is the same value for the FOCUS parameter as used for refinement runs in [20].
 
Literatur
1.
Zurück zum Zitat Addis, B., Cassioli, A., Locatelli, M., Schoen, F.: Global optimization for the design of space trajectories. Comput. Optim. Appl. 48(3), 635–652 (2011)MathSciNetCrossRefMATH Addis, B., Cassioli, A., Locatelli, M., Schoen, F.: Global optimization for the design of space trajectories. Comput. Optim. Appl. 48(3), 635–652 (2011)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Ampatzis, C., Izzo, D.: Machine learning techniques for approximation of objective functions in trajectory optimisation. In: Proceedings of the International Conference on Artificial Intelligence in Space (IJCAI) (2009) Ampatzis, C., Izzo, D.: Machine learning techniques for approximation of objective functions in trajectory optimisation. In: Proceedings of the International Conference on Artificial Intelligence in Space (IJCAI) (2009)
3.
Zurück zum Zitat Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1769–1776. IEEE (2005) Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1769–1776. IEEE (2005)
4.
Zurück zum Zitat Biazzini, M., Banhelyi, B., Montresor, A., Jelasity, M.: Distributed hyper-heuristics for real parameter optimization. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 1339–1346 (2009) Biazzini, M., Banhelyi, B., Montresor, A., Jelasity, M.: Distributed hyper-heuristics for real parameter optimization. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 1339–1346 (2009)
5.
Zurück zum Zitat Biscani, F., Izzo, D., Yam, C.H.: A global optimisation toolbox for massively parallel engineering optimisation. In: Proceedings of the 4th International Conference on Astrodynamics Tools and Techniques (ICATT) (2010) Biscani, F., Izzo, D., Yam, C.H.: A global optimisation toolbox for massively parallel engineering optimisation. In: Proceedings of the 4th International Conference on Astrodynamics Tools and Techniques (ICATT) (2010)
6.
Zurück zum Zitat Danoy, G., Pinto, F.G., Dorronsoro, B., Bouvry, P.: New state-of-the-art results for Cassini2 global trajectory optimization problem. Acta Futura 5, 65–72 (2012) Danoy, G., Pinto, F.G., Dorronsoro, B., Bouvry, P.: New state-of-the-art results for Cassini2 global trajectory optimization problem. Acta Futura 5, 65–72 (2012)
8.
Zurück zum Zitat Gad, A.H.G.E.: Space trajectories optimization using variable-chromosome-length genetic algorithms. Ph.D.-Thesis, Michigan Technological University, USA (2011) Gad, A.H.G.E.: Space trajectories optimization using variable-chromosome-length genetic algorithms. Ph.D.-Thesis, Michigan Technological University, USA (2011)
9.
Zurück zum Zitat Gruber, A.: Multi Gravity Assist Optimierung mittels Evolutionsstrategien. BSc-Thesis, Vienna University of Technology, Austria (2009) Gruber, A.: Multi Gravity Assist Optimierung mittels Evolutionsstrategien. BSc-Thesis, Vienna University of Technology, Austria (2009)
11.
Zurück zum Zitat Henderson, T.A.: A Learning Approach To Sampling Optimization: Applications in Astrodynamics. Ph.D.-Thesis, Texas A & M University, USA (2013) Henderson, T.A.: A Learning Approach To Sampling Optimization: Applications in Astrodynamics. Ph.D.-Thesis, Texas A & M University, USA (2013)
12.
Zurück zum Zitat Islam, S.K.M., Roy, S.G.S., Suganthan, P.N.: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. 42(2), 482–500 (2012)CrossRef Islam, S.K.M., Roy, S.G.S., Suganthan, P.N.: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. 42(2), 482–500 (2012)CrossRef
13.
Zurück zum Zitat Izzo, D.: Global optimization and space pruning for spacecraft trajectory design. In: Conway, B. (ed.) Spacecraft Trajectory Optimization, pp. 178–199. Cambridge University Press, Cambridge (2010)CrossRef Izzo, D.: Global optimization and space pruning for spacecraft trajectory design. In: Conway, B. (ed.) Spacecraft Trajectory Optimization, pp. 178–199. Cambridge University Press, Cambridge (2010)CrossRef
14.
Zurück zum Zitat Kemble, S.: Interplanetary Mission Analysis and Design. Astronautical Engineering. Springer, Heidelberg (2006) Kemble, S.: Interplanetary Mission Analysis and Design. Astronautical Engineering. Springer, Heidelberg (2006)
15.
Zurück zum Zitat Lancinskas, A., Zilinskas, J., Ortigosa, P.M.: Investigation of parallel particle swarm optimization algorithm with reduction of the search area. In: Proceedings of the International Conference on Cluster Computing Workshops and Posters. IEEE (2010) Lancinskas, A., Zilinskas, J., Ortigosa, P.M.: Investigation of parallel particle swarm optimization algorithm with reduction of the search area. In: Proceedings of the International Conference on Cluster Computing Workshops and Posters. IEEE (2010)
16.
Zurück zum Zitat Musegaas, P.: Optimization of space trajectories including multiple gravity assists and deep space maneuvers. MSc Thesis, Delft University of Technology, Netherlands (2012) Musegaas, P.: Optimization of space trajectories including multiple gravity assists and deep space maneuvers. MSc Thesis, Delft University of Technology, Netherlands (2012)
17.
Zurück zum Zitat Schlueter, M., Egea, J.A., Banga, J.R.: Extended ant colony optimization for non-convex mixed integer nonlinear programming. Comput. Oper Res. 36(7), 2217–2229 (2009)MathSciNetCrossRefMATH Schlueter, M., Egea, J.A., Banga, J.R.: Extended ant colony optimization for non-convex mixed integer nonlinear programming. Comput. Oper Res. 36(7), 2217–2229 (2009)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Schlueter, M., Gerdts, M., Rueckmann, J.J.: A numerical study of MIDACO on 100 MINLP benchmarks. Optimization 61(7), 873–900 (2012)MathSciNetCrossRefMATH Schlueter, M., Gerdts, M., Rueckmann, J.J.: A numerical study of MIDACO on 100 MINLP benchmarks. Optimization 61(7), 873–900 (2012)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Schlueter, M., Erb, S., Gerdts, M., Kemble, S., Rueckmann, J.J.: MIDACO on MINLP space applications. Adv. Space Res. 51(7), 1116–1131 (2013)CrossRef Schlueter, M., Erb, S., Gerdts, M., Kemble, S., Rueckmann, J.J.: MIDACO on MINLP space applications. Adv. Space Res. 51(7), 1116–1131 (2013)CrossRef
20.
Zurück zum Zitat Schlueter, M.: MIDACO software performance on interplanetary trajectory benchmarks. Adv. Space Res. 54(4), 744–754 (2014)CrossRef Schlueter, M.: MIDACO software performance on interplanetary trajectory benchmarks. Adv. Space Res. 54(4), 744–754 (2014)CrossRef
21.
Zurück zum Zitat Schlueter, M., Munetomo, M.: Introduction to MIDACO-SOLVER software. Technical report, HUSCAP, Hokkaido University, Japan (2013) Schlueter, M., Munetomo, M.: Introduction to MIDACO-SOLVER software. Technical report, HUSCAP, Hokkaido University, Japan (2013)
22.
Zurück zum Zitat Stracquadanio, G., La Ferla, A., De Felice, M., Nicosia, G.: Design of robust space trajectories. In: Proceedings of the 31st International Conference on Artificial Intelligence (SGAI) (2011) Stracquadanio, G., La Ferla, A., De Felice, M., Nicosia, G.: Design of robust space trajectories. In: Proceedings of the 31st International Conference on Artificial Intelligence (SGAI) (2011)
23.
Zurück zum Zitat Vinko, T., Izzo, D.: Global Optimisation Heuristics and Test Problems for Preliminary Spacecraft Trajectory Design, European Space Agency. ACT Technical report, ACT-TNT-MAD-GOHTPPSTD (2008) Vinko, T., Izzo, D.: Global Optimisation Heuristics and Test Problems for Preliminary Spacecraft Trajectory Design, European Space Agency. ACT Technical report, ACT-TNT-MAD-GOHTPPSTD (2008)
Metadaten
Titel
Numerical Optimization of ESA’s Messenger Space Mission Benchmark
verfasst von
Martin Schlueter
Mohamed Wahib
Masaharu Munetomo
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-55849-3_47