Skip to main content

2020 | OriginalPaper | Buchkapitel

Numerical Schemes for Semiconductors Energy-Transport Models

verfasst von : Marianne Bessemoulin-Chatard, Claire Chainais-Hillairet, Hélène Mathis

Erschienen in: Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We introduce some finite volume schemes for unipolar energy-transport models. Using a reformulation in dual entropy variables, we can show the decay of a discrete entropy with control of the discrete entropy dissipation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bradji, A., Herbin, R.: Discretization of coupled heat and electrical diffusion problems by finite-element and finite-volume methods. IMA J. Numer. Anal. 28(3), 469–495 (2008)MathSciNetCrossRef Bradji, A., Herbin, R.: Discretization of coupled heat and electrical diffusion problems by finite-element and finite-volume methods. IMA J. Numer. Anal. 28(3), 469–495 (2008)MathSciNetCrossRef
2.
Zurück zum Zitat Calgaro, C., Colin, C., Creusé, E.: A combined finite volume—finite element scheme for a low-Mach system involving a Joule term. AIMS Math. 5(1), 311–331 (2019)MathSciNetCrossRef Calgaro, C., Colin, C., Creusé, E.: A combined finite volume—finite element scheme for a low-Mach system involving a Joule term. AIMS Math. 5(1), 311–331 (2019)MathSciNetCrossRef
3.
Zurück zum Zitat Chainais-Hillairet, C.: Discrete duality finite volume schemes for two-dimensional drift-diffusion and energy-transport models. Internat. J. Numer. Methods Fluids 59(3), 239–257 (2009)MathSciNetCrossRef Chainais-Hillairet, C.: Discrete duality finite volume schemes for two-dimensional drift-diffusion and energy-transport models. Internat. J. Numer. Methods Fluids 59(3), 239–257 (2009)MathSciNetCrossRef
4.
Zurück zum Zitat Chen, L., Hsiao, L.: The solution of Lyumkis energy transport model in semiconductor science. Math. Methods Appl. Sci. 26(16), 1421–1433 (2003)MathSciNetCrossRef Chen, L., Hsiao, L.: The solution of Lyumkis energy transport model in semiconductor science. Math. Methods Appl. Sci. 26(16), 1421–1433 (2003)MathSciNetCrossRef
5.
Zurück zum Zitat Chen, L., Hsiao, L., Li, Y.: Large time behavior and energy relaxation time limit of the solutions to an energy transport model in semiconductors. J. Math. Anal. Appl. 312(2), 596–619 (2005)MathSciNetCrossRef Chen, L., Hsiao, L., Li, Y.: Large time behavior and energy relaxation time limit of the solutions to an energy transport model in semiconductors. J. Math. Anal. Appl. 312(2), 596–619 (2005)MathSciNetCrossRef
6.
Zurück zum Zitat Degond, P., Génieys, S., Jüngel, A.: A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. J. Math. Pures Appl. (9), 76(10), 991–1015 (1997) Degond, P., Génieys, S., Jüngel, A.: A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. J. Math. Pures Appl. (9), 76(10), 991–1015 (1997)
7.
Zurück zum Zitat Degond, P., Jüngel, A., Pietra, P.: Numerical discretization of energy-transport models for semiconductors with nonparabolic band structure. SIAM J. Sci. Comput. 22(3), 986–1007 (2000)MathSciNetCrossRef Degond, P., Jüngel, A., Pietra, P.: Numerical discretization of energy-transport models for semiconductors with nonparabolic band structure. SIAM J. Sci. Comput. 22(3), 986–1007 (2000)MathSciNetCrossRef
9.
Zurück zum Zitat Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam, (2000) Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam, (2000)
10.
Zurück zum Zitat Fang, W., Ito, K.: Existence of stationary solutions to an energy drift-diffusion model for semiconductor devices. Math. Models Methods Appl. Sci. 11(5), 827–840 (2001)MathSciNetCrossRef Fang, W., Ito, K.: Existence of stationary solutions to an energy drift-diffusion model for semiconductor devices. Math. Models Methods Appl. Sci. 11(5), 827–840 (2001)MathSciNetCrossRef
11.
Zurück zum Zitat Fournié, M.: Numerical discretization of energy-transport model for semiconductors using high-order compact schemes. Appl. Math. Lett. 15(6), 721–726 (2002)MathSciNetCrossRef Fournié, M.: Numerical discretization of energy-transport model for semiconductors using high-order compact schemes. Appl. Math. Lett. 15(6), 721–726 (2002)MathSciNetCrossRef
12.
Zurück zum Zitat Griepentrog, J.A.: An application of the implicit function theorem to an energy model of the semiconductor theory. ZAMM Z. Angew. Math. Mech. 79(1), 43–51 (1999)MathSciNetCrossRef Griepentrog, J.A.: An application of the implicit function theorem to an energy model of the semiconductor theory. ZAMM Z. Angew. Math. Mech. 79(1), 43–51 (1999)MathSciNetCrossRef
13.
Zurück zum Zitat Holst, S., Jüngel, A., Pietra, P.: A mixed finite-element discretization of the energy-transport model for semiconductors. SIAM J. Sci. Comput. 24(6), 2058–2075 (2003)MathSciNetCrossRef Holst, S., Jüngel, A., Pietra, P.: A mixed finite-element discretization of the energy-transport model for semiconductors. SIAM J. Sci. Comput. 24(6), 2058–2075 (2003)MathSciNetCrossRef
14.
Zurück zum Zitat Holst, S., Jüngel, A., Pietra, P.: An adaptive mixed scheme for energy-transport simulations of field-effect transistors. SIAM J. Sci. Comput. 25(5), 1698–1716 (2004)MathSciNetCrossRef Holst, S., Jüngel, A., Pietra, P.: An adaptive mixed scheme for energy-transport simulations of field-effect transistors. SIAM J. Sci. Comput. 25(5), 1698–1716 (2004)MathSciNetCrossRef
15.
Zurück zum Zitat Jüngel, A.: Regularity and uniqueness of solutions to a parabolic system in nonequilibrium thermodynamics. Nonlinear Anal. 41(5–6, Ser. A: Theory Methods), 669–688 (2000) Jüngel, A.: Regularity and uniqueness of solutions to a parabolic system in nonequilibrium thermodynamics. Nonlinear Anal. 41(5–6, Ser. A: Theory Methods), 669–688 (2000)
16.
Zurück zum Zitat Jüngel, A., Pinnau, R., Röhrig, E.: Existence analysis for a simplified transient energy-transport model for semiconductors. Math. Methods Appl. Sci. 36(13), 1701–1712 (2013)MathSciNetCrossRef Jüngel, A., Pinnau, R., Röhrig, E.: Existence analysis for a simplified transient energy-transport model for semiconductors. Math. Methods Appl. Sci. 36(13), 1701–1712 (2013)MathSciNetCrossRef
17.
Zurück zum Zitat Jüngel, A.: Quasi-hydrodynamic semiconductor equations. In: Progress in Nonlinear Differential Equations and their Applications, vol. 41. Birkhäuser Verlag, Basel (2001) Jüngel, A.: Quasi-hydrodynamic semiconductor equations. In: Progress in Nonlinear Differential Equations and their Applications, vol. 41. Birkhäuser Verlag, Basel (2001)
18.
Zurück zum Zitat Kantner, M.: Generalized Scharfetter-Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient. J. Comput. Phys. 402, 109091 (2020)MathSciNetCrossRef Kantner, M.: Generalized Scharfetter-Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient. J. Comput. Phys. 402, 109091 (2020)MathSciNetCrossRef
19.
Zurück zum Zitat Romano, V.: 2D numerical simulation of the MEP energy-transport model with a finite difference scheme. J. Comput. Phys. 221(2), 439–468 (2007)MathSciNetCrossRef Romano, V.: 2D numerical simulation of the MEP energy-transport model with a finite difference scheme. J. Comput. Phys. 221(2), 439–468 (2007)MathSciNetCrossRef
20.
Zurück zum Zitat Zamponi, N., Jüngel, A.: Global existence analysis for degenerate energy-transport models for semiconductors. J. Differ. Equ. 258(7), 2339–2363 (2015)MathSciNetCrossRef Zamponi, N., Jüngel, A.: Global existence analysis for degenerate energy-transport models for semiconductors. J. Differ. Equ. 258(7), 2339–2363 (2015)MathSciNetCrossRef
Metadaten
Titel
Numerical Schemes for Semiconductors Energy-Transport Models
verfasst von
Marianne Bessemoulin-Chatard
Claire Chainais-Hillairet
Hélène Mathis
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-43651-3_5